切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2021, Vol. 14 ›› Issue (03) : 187 -191. doi: 10.3877/cma.j.issn.1674-6880.2021.03.003

论著

萝卜硫素对脓毒症相关急性肾损伤大鼠氧化应激损伤的保护作用
汤鲁明1, 徐俊南1, 林海鸟1, 杨婷1, 潘小东1, 孙来芳1,()   
  1. 1. 325027 浙江温州,温州医科大学附属第二医院、育英儿童医院急诊医学科
  • 收稿日期:2021-01-15 出版日期:2021-06-30
  • 通信作者: 孙来芳
  • 基金资助:
    温州市公益性科技计划项目(Y20180514)

Protective effect of sulforaphane on oxidative response in rats with sepsis-associated acute kidney injury

Luming Tang1, Junnan Xu1, Hainiao Lin1, Ting Yang1, Xiaodong Pan1, Laifang Sun1,()   

  1. 1. Department of Emergency Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
  • Received:2021-01-15 Published:2021-06-30
  • Corresponding author: Laifang Sun
引用本文:

汤鲁明, 徐俊南, 林海鸟, 杨婷, 潘小东, 孙来芳. 萝卜硫素对脓毒症相关急性肾损伤大鼠氧化应激损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2021, 14(03): 187-191.

Luming Tang, Junnan Xu, Hainiao Lin, Ting Yang, Xiaodong Pan, Laifang Sun. Protective effect of sulforaphane on oxidative response in rats with sepsis-associated acute kidney injury[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2021, 14(03): 187-191.

目的

评价萝卜硫素对于脓毒症相关急性肾损伤(SA-AKI)大鼠肾组织氧化应激损伤的保护作用。

方法

将15只Sprague-Dawley大鼠分成对照组、模型组和治疗组,每组各5只。模型组和治疗组大鼠采用盲肠结扎穿孔法制备大鼠SA-AKI模型,对照组大鼠在麻醉后仅行腹壁开关手术,治疗组在造模后6 h予以5 mg / kg的萝卜硫素泵入15 min,其余两组注入等量等渗NaCl溶液。于术后24 h留取静脉血标本检测血尿素氮及血肌酐水平,而后处死大鼠取肾组织,采用酶联免疫吸附测定检测肾组织过氧化氢酶(CAT)、丙二醛及超氧化物歧化酶(SOD)表达水平。同时,采用荧光实时定量PCR检测肾组织中性粒细胞明胶酶相关脂质运载蛋白(NGAL)信使RNA(mRNA)的表达水平。

结果

3组大鼠间血尿素氮(F = 922.714,P < 0.001)、血肌酐(F = 4 790.001,P < 0.001)、CAT(F = 237.331,P < 0.001)、丙二醛(F = 913.260,P < 0.001)、SOD(F = 752.292,P < 0.001)及NGAL mRNA(F = 319.468,P < 0.001)水平的比较,差异均有统计学意义。进一步两两比较发现,与对照组大鼠比较,模型组及治疗组大鼠的血尿素氮[(5.98 ± 0.12)、(14.93 ± 0.43)、(11.99 ± 0.26)mmol / L]、血肌酐[(27.4 ± 0.9)、(97.9 ± 1.0)、(75.0 ± 1.2)μmol / L]、丙二醛[(11.9 ± 0.4)、(27.5 ± 0.7)、(21.8 ± 0.4)nmol / mg]及NGAL mRNA表达水平均显著上升,且模型组上升更为显著;CAT[(21.64 ± 0.32)、(17.06 ± 0.29)、(19.96 ± 0.29)U / mg]及SOD[(71.6 ± 0.3)、(54.2 ± 1.0)、(59.7 ± 0.4)U / mg]水平均显著下降,且模型组下降更为显著(P均< 0.05)。

结论

萝卜硫素可减轻SA-AKI大鼠肾组织氧化应激损伤,且其作用机制可能与下调NGAL mRNA表达相关。

Objective

To explore the protective effect of sulforaphane on the oxidative response in rats with sepsis-associated acute kidney injury (SA-AKI).

Methods

Fifteen Sprague-Dawley rats were randomly allocated into a control group, a sepsis group and a treatment group, 5 rats in each group. Rats in the sepsis group and treatment group accepted cecal ligation and puncture (CLP) operation, while rats in the control group received celiotomy without ligation and puncture. Then rats in the treatment group received 5 mg / kg of sulforaphane for 15 min at 6 h after CLP, and rats in the other two groups received an equal amount of isotonic NaCl solution by intraperitoneal injection at the same time. At 24 h after CLP, blood samples from each group were collected to detect the levels of blood urea nitrogen and creatinine. Then, the rats were sacrificed and their renal tissue was collected to determine the levels of catalase (CAT), malondialdehyde and superoxide dismutase (SOD) by enzyme-linked immunosorbent assay. Meanwhile, the neutrophil gelatinase associated lipocalin (NGAL) messenger RNA (mRNA) expression in the renal tissue was detected by fluorescence real-time quantitative PCR.

Results

The levels of blood urea nitrogen (F = 922.714, P < 0.001), creatinine (F = 4 790.001, P < 0.001), CAT (F = 237.331, P < 0.001), malondialdehyde (F = 913.260, P < 0.001), SOD (F = 752.292, P < 0.001) and NGAL mRNA (F = 319.468, P < 0.001) all showed significant differences among the three groups. Further pairwise comparison revealed that compared with the control group, the levels of blood urea nitrogen [(5.98 ± 0.12), (14.93 ± 0.43), (11.99 ± 0.26) mmol / L], creatinine [(27.4 ± 0.9), (97.9 ± 1.0), (75.0 ± 1.2) μmol / L], malondialdehyde [(11.9 ± 0.4), (27.5 ± 0.7), (21.8 ± 0.4) nmol / mg] and NGAL mRNA in the sepsis group and treatment group increased obviously, which increased most in the sepsis group, and the levels of CAT [(21.64 ± 0.32), (17.06 ± 0.29), (19.96 ± 0.29) U / mg] and SOD [(71.6 ± 0.3), (54.2 ± 1.0), (59.7 ± 0.4) U / mg] decreased markedly, which decreased most in the sepsis group (all P < 0.05).

Conclusion

Sulforaphane can attenuate oxidative stress injury in rats with SA-AKI, and the mechanism is probably related to the inhibition of NGAL mRNA expression in kidney tissue.

表1 各组大鼠肾功能指标的比较( ± s
表2 各组大鼠肾组织氧化相关指标的比较( ± s
图1 各组大鼠肾组织NGAL mRNA表达水平的比较(n = 5)
1
Poston JT, Koyner JL Sepsis associated acute kidney injury[J]. BMJ, 2019 (364): k4891.
2
Gómez H, Kellum JA. Sepsis-induced acute kidney in-jury[J]. Curr Opin Crit Care, 2016, 22 (6): 546-553.
3
曾小娜,尹连红,许丽娜. 脓毒症急性肾损伤发病机制[J]. 生理科学进展,2020,51(2):122-126.
4
Dennis JM, Witting PK. Protective role for antioxidants in acute kidney disease[J]. Nutrients, 2017, 9 (7): 718.
5
Jiang X, Liu Y, Ma L, et al. Chemopreventive activity of sulforaphane[J]. Drug Des Devel Ther, 2018 (12): 2905-2913.
6
董春霞,杨莉. AKI的流行病学:AKI的发生率、患者死亡率、肾脏死亡率[J]. 中国血液净化,2017,16(1):8-10.
7
刘颖,孟超,赵谊,等. 自噬蛋白Beclin1及炎症因子表达在脓毒症急性肾损伤中的作用[J/CD]. 中华危重症医学杂志(电子版),2020,13(6):401-405.
8
吴炆晓,张爱华. 线粒体功能障碍与脓毒症急性肾损伤的研究进展[J]. 中华肾脏病杂志,2020,36(4):327-331.
9
Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment[J]. Kidney Int, 2019, 96 (5): 1083-1099.
10
葛勤敏,边帆,潘曙明. 脓毒症急性肾损伤研究进展[J]. 内科急危重症杂志,2016,22(6):460-463.
11
Podkowińska A, Formanowicz D. Chronic kidney dis-ease as oxidative stress- and inflammatory-mediated cardiovascular disease[J]. Antioxidants (Basel), 2020, 9 (8): 752.
12
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases[J]. Clin Interv Aging, 2018 (13): 757-772.
13
Ho E, Karimi Galougahi K, Liu CC, et al. Biological markers of oxidative stress: applications to cardiovascular research and practice[J]. Redox Biol, 2013, 1 (1): 483-491.
14
Yatoo MI, Parray OR, Mir M, et al. Comparative e-valuation of different therapeutic protocols for contagious caprine pleuropneumonia in Himalayan Pashmina goats[J]. Trop Anim Health Prod, 2019, 51 (8): 2127-2137.
15
Basak P, Sadhukhan P, Sarkar P, et al. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy[J]. Toxicol Rep, 2017 (4): 306-318.
16
Liu P, Atkinson SJ, Akbareian SE, et al. Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3 / HIF-1α / VEGF signalling[J]. Sci Rep, 2017, 7 (1): 12651.
17
Ranaweera SS, Dissanayake CY, Natraj P, et al. Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob / ob mice[J]. J Vet Sci, 2020, 21 (6): e91.
18
Pearson BL, Simon JM, McCoy ES, et al. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration[J]. Nat Commun, 2016 (7): 11173.
19
Sun Y, Yang T, Mao L, et al. Sulforaphane protects against brain diseases: roles of cytoprotective enzymes[J]. Austin J Cerebrovasc Dis Stroke, 2017, 4 (1): 1054.
20
Nagata N, Xu L, Kohno S, et al. Glucoraphanin am-eliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice[J]. Diabetes, 2017, 66 (5):1222-1236.
21
Brown RH, Reynolds C, Brooker A, et al. Sulfora-phane improves the bronchoprotective response in asthmatics through nrf2-mediated gene pathways[J]. Respir Res, 2015, 16 (1): 106.
22
Wu W, Peng G, Yang F, et al. Sulforaphane has a therapeutic effect in an atopic dermatitis murine model and activates the Nrf2 / HO-1 axis[J]. Mol Med Rep, 2019, 20 (2): 1761-1771.
23
Oh CJ, Kim JY, Min AK, et al. Sulforaphane atte-nuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β / Smad signaling[J]. Free Radic Biol Med, 2012, 52 (3): 671-682.
24
Bao B, Zhang MQ, Chen ZY, et al. Sulforaphane prevents PC12 cells from oxidative damage via the Nrf2 pathway[J]. Mol Med Rep, 2019, 19 (6): 4890-4896.
25
汤鲁明,王林霞,孙来芳,等. 萝卜硫素对脓毒症急性肺损伤大鼠氧化损伤及APE1表达的影响[J/CD]. 中华危重症医学杂志(电子版),2017,10(4):246-251.
26
徐建国,金献冠,李钰. 尿肾损伤分子1和中性粒细胞明胶酶相关脂质运载蛋白对脓毒症合并急性肾损伤患者早期连续性肾脏替代治疗的预测价值[J/CD]. 中华危重症医学杂志(电子版),2016,9(4):250-255.
[1] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[2] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[3] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[4] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[5] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[6] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[7] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[8] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[9] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[10] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[11] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[12] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[13] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[14] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要