切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2021, Vol. 14 ›› Issue (03) : 187 -191. doi: 10.3877/cma.j.issn.1674-6880.2021.03.003

论著

萝卜硫素对脓毒症相关急性肾损伤大鼠氧化应激损伤的保护作用
汤鲁明1, 徐俊南1, 林海鸟1, 杨婷1, 潘小东1, 孙来芳1,()   
  1. 1. 325027 浙江温州,温州医科大学附属第二医院、育英儿童医院急诊医学科
  • 收稿日期:2021-01-15 出版日期:2021-06-30
  • 通信作者: 孙来芳
  • 基金资助:
    温州市公益性科技计划项目(Y20180514)

Protective effect of sulforaphane on oxidative response in rats with sepsis-associated acute kidney injury

Luming Tang1, Junnan Xu1, Hainiao Lin1, Ting Yang1, Xiaodong Pan1, Laifang Sun1,()   

  1. 1. Department of Emergency Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
  • Received:2021-01-15 Published:2021-06-30
  • Corresponding author: Laifang Sun
引用本文:

汤鲁明, 徐俊南, 林海鸟, 杨婷, 潘小东, 孙来芳. 萝卜硫素对脓毒症相关急性肾损伤大鼠氧化应激损伤的保护作用[J]. 中华危重症医学杂志(电子版), 2021, 14(03): 187-191.

Luming Tang, Junnan Xu, Hainiao Lin, Ting Yang, Xiaodong Pan, Laifang Sun. Protective effect of sulforaphane on oxidative response in rats with sepsis-associated acute kidney injury[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2021, 14(03): 187-191.

目的

评价萝卜硫素对于脓毒症相关急性肾损伤(SA-AKI)大鼠肾组织氧化应激损伤的保护作用。

方法

将15只Sprague-Dawley大鼠分成对照组、模型组和治疗组,每组各5只。模型组和治疗组大鼠采用盲肠结扎穿孔法制备大鼠SA-AKI模型,对照组大鼠在麻醉后仅行腹壁开关手术,治疗组在造模后6 h予以5 mg / kg的萝卜硫素泵入15 min,其余两组注入等量等渗NaCl溶液。于术后24 h留取静脉血标本检测血尿素氮及血肌酐水平,而后处死大鼠取肾组织,采用酶联免疫吸附测定检测肾组织过氧化氢酶(CAT)、丙二醛及超氧化物歧化酶(SOD)表达水平。同时,采用荧光实时定量PCR检测肾组织中性粒细胞明胶酶相关脂质运载蛋白(NGAL)信使RNA(mRNA)的表达水平。

结果

3组大鼠间血尿素氮(F = 922.714,P < 0.001)、血肌酐(F = 4 790.001,P < 0.001)、CAT(F = 237.331,P < 0.001)、丙二醛(F = 913.260,P < 0.001)、SOD(F = 752.292,P < 0.001)及NGAL mRNA(F = 319.468,P < 0.001)水平的比较,差异均有统计学意义。进一步两两比较发现,与对照组大鼠比较,模型组及治疗组大鼠的血尿素氮[(5.98 ± 0.12)、(14.93 ± 0.43)、(11.99 ± 0.26)mmol / L]、血肌酐[(27.4 ± 0.9)、(97.9 ± 1.0)、(75.0 ± 1.2)μmol / L]、丙二醛[(11.9 ± 0.4)、(27.5 ± 0.7)、(21.8 ± 0.4)nmol / mg]及NGAL mRNA表达水平均显著上升,且模型组上升更为显著;CAT[(21.64 ± 0.32)、(17.06 ± 0.29)、(19.96 ± 0.29)U / mg]及SOD[(71.6 ± 0.3)、(54.2 ± 1.0)、(59.7 ± 0.4)U / mg]水平均显著下降,且模型组下降更为显著(P均< 0.05)。

结论

萝卜硫素可减轻SA-AKI大鼠肾组织氧化应激损伤,且其作用机制可能与下调NGAL mRNA表达相关。

Objective

To explore the protective effect of sulforaphane on the oxidative response in rats with sepsis-associated acute kidney injury (SA-AKI).

Methods

Fifteen Sprague-Dawley rats were randomly allocated into a control group, a sepsis group and a treatment group, 5 rats in each group. Rats in the sepsis group and treatment group accepted cecal ligation and puncture (CLP) operation, while rats in the control group received celiotomy without ligation and puncture. Then rats in the treatment group received 5 mg / kg of sulforaphane for 15 min at 6 h after CLP, and rats in the other two groups received an equal amount of isotonic NaCl solution by intraperitoneal injection at the same time. At 24 h after CLP, blood samples from each group were collected to detect the levels of blood urea nitrogen and creatinine. Then, the rats were sacrificed and their renal tissue was collected to determine the levels of catalase (CAT), malondialdehyde and superoxide dismutase (SOD) by enzyme-linked immunosorbent assay. Meanwhile, the neutrophil gelatinase associated lipocalin (NGAL) messenger RNA (mRNA) expression in the renal tissue was detected by fluorescence real-time quantitative PCR.

Results

The levels of blood urea nitrogen (F = 922.714, P < 0.001), creatinine (F = 4 790.001, P < 0.001), CAT (F = 237.331, P < 0.001), malondialdehyde (F = 913.260, P < 0.001), SOD (F = 752.292, P < 0.001) and NGAL mRNA (F = 319.468, P < 0.001) all showed significant differences among the three groups. Further pairwise comparison revealed that compared with the control group, the levels of blood urea nitrogen [(5.98 ± 0.12), (14.93 ± 0.43), (11.99 ± 0.26) mmol / L], creatinine [(27.4 ± 0.9), (97.9 ± 1.0), (75.0 ± 1.2) μmol / L], malondialdehyde [(11.9 ± 0.4), (27.5 ± 0.7), (21.8 ± 0.4) nmol / mg] and NGAL mRNA in the sepsis group and treatment group increased obviously, which increased most in the sepsis group, and the levels of CAT [(21.64 ± 0.32), (17.06 ± 0.29), (19.96 ± 0.29) U / mg] and SOD [(71.6 ± 0.3), (54.2 ± 1.0), (59.7 ± 0.4) U / mg] decreased markedly, which decreased most in the sepsis group (all P < 0.05).

Conclusion

Sulforaphane can attenuate oxidative stress injury in rats with SA-AKI, and the mechanism is probably related to the inhibition of NGAL mRNA expression in kidney tissue.

表1 各组大鼠肾功能指标的比较( ± s
表2 各组大鼠肾组织氧化相关指标的比较( ± s
图1 各组大鼠肾组织NGAL mRNA表达水平的比较(n = 5)
1
Poston JT, Koyner JL Sepsis associated acute kidney injury[J]. BMJ, 2019 (364): k4891.
2
Gómez H, Kellum JA. Sepsis-induced acute kidney in-jury[J]. Curr Opin Crit Care, 2016, 22 (6): 546-553.
3
曾小娜,尹连红,许丽娜. 脓毒症急性肾损伤发病机制[J]. 生理科学进展,2020,51(2):122-126.
4
Dennis JM, Witting PK. Protective role for antioxidants in acute kidney disease[J]. Nutrients, 2017, 9 (7): 718.
5
Jiang X, Liu Y, Ma L, et al. Chemopreventive activity of sulforaphane[J]. Drug Des Devel Ther, 2018 (12): 2905-2913.
6
董春霞,杨莉. AKI的流行病学:AKI的发生率、患者死亡率、肾脏死亡率[J]. 中国血液净化,2017,16(1):8-10.
7
刘颖,孟超,赵谊,等. 自噬蛋白Beclin1及炎症因子表达在脓毒症急性肾损伤中的作用[J/CD]. 中华危重症医学杂志(电子版),2020,13(6):401-405.
8
吴炆晓,张爱华. 线粒体功能障碍与脓毒症急性肾损伤的研究进展[J]. 中华肾脏病杂志,2020,36(4):327-331.
9
Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment[J]. Kidney Int, 2019, 96 (5): 1083-1099.
10
葛勤敏,边帆,潘曙明. 脓毒症急性肾损伤研究进展[J]. 内科急危重症杂志,2016,22(6):460-463.
11
Podkowińska A, Formanowicz D. Chronic kidney dis-ease as oxidative stress- and inflammatory-mediated cardiovascular disease[J]. Antioxidants (Basel), 2020, 9 (8): 752.
12
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases[J]. Clin Interv Aging, 2018 (13): 757-772.
13
Ho E, Karimi Galougahi K, Liu CC, et al. Biological markers of oxidative stress: applications to cardiovascular research and practice[J]. Redox Biol, 2013, 1 (1): 483-491.
14
Yatoo MI, Parray OR, Mir M, et al. Comparative e-valuation of different therapeutic protocols for contagious caprine pleuropneumonia in Himalayan Pashmina goats[J]. Trop Anim Health Prod, 2019, 51 (8): 2127-2137.
15
Basak P, Sadhukhan P, Sarkar P, et al. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy[J]. Toxicol Rep, 2017 (4): 306-318.
16
Liu P, Atkinson SJ, Akbareian SE, et al. Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3 / HIF-1α / VEGF signalling[J]. Sci Rep, 2017, 7 (1): 12651.
17
Ranaweera SS, Dissanayake CY, Natraj P, et al. Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob / ob mice[J]. J Vet Sci, 2020, 21 (6): e91.
18
Pearson BL, Simon JM, McCoy ES, et al. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration[J]. Nat Commun, 2016 (7): 11173.
19
Sun Y, Yang T, Mao L, et al. Sulforaphane protects against brain diseases: roles of cytoprotective enzymes[J]. Austin J Cerebrovasc Dis Stroke, 2017, 4 (1): 1054.
20
Nagata N, Xu L, Kohno S, et al. Glucoraphanin am-eliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice[J]. Diabetes, 2017, 66 (5):1222-1236.
21
Brown RH, Reynolds C, Brooker A, et al. Sulfora-phane improves the bronchoprotective response in asthmatics through nrf2-mediated gene pathways[J]. Respir Res, 2015, 16 (1): 106.
22
Wu W, Peng G, Yang F, et al. Sulforaphane has a therapeutic effect in an atopic dermatitis murine model and activates the Nrf2 / HO-1 axis[J]. Mol Med Rep, 2019, 20 (2): 1761-1771.
23
Oh CJ, Kim JY, Min AK, et al. Sulforaphane atte-nuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β / Smad signaling[J]. Free Radic Biol Med, 2012, 52 (3): 671-682.
24
Bao B, Zhang MQ, Chen ZY, et al. Sulforaphane prevents PC12 cells from oxidative damage via the Nrf2 pathway[J]. Mol Med Rep, 2019, 19 (6): 4890-4896.
25
汤鲁明,王林霞,孙来芳,等. 萝卜硫素对脓毒症急性肺损伤大鼠氧化损伤及APE1表达的影响[J/CD]. 中华危重症医学杂志(电子版),2017,10(4):246-251.
26
徐建国,金献冠,李钰. 尿肾损伤分子1和中性粒细胞明胶酶相关脂质运载蛋白对脓毒症合并急性肾损伤患者早期连续性肾脏替代治疗的预测价值[J/CD]. 中华危重症医学杂志(电子版),2016,9(4):250-255.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[5] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[6] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[7] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[8] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[9] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[12] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[13] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[14] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[15] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
阅读次数
全文


摘要