切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2024, Vol. 17 ›› Issue (05) : 372 -378. doi: 10.3877/cma.j.issn.1674-6880.2024.05.003

论著

脓毒症患者早期生存影响因素及Cox 风险预测模型构建
庄燕1,(), 戴林峰1, 张海东1, 陈秋华1, 聂清芳1   
  1. 1.210029 南京,南京中医药大学附属医院重症医学科
  • 收稿日期:2024-01-20 出版日期:2024-10-31
  • 通信作者: 庄燕
  • 基金资助:
    江苏省中医药管理局科技发展计划项目(MS2021008)江苏省中医药管理局中医重点专科项目(2023-5)南京中医药大学自然科学基金项目(XZR2023002)

Risk factors of early survival for sepsis patients and construction of a Cox risk prediction model

Yan Zhuang1,(), Linfeng Dai1, Haidong Zhang1, Qiuhua Chen1, Qingfang Nie1   

  1. 1.Department of Critical Care Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
  • Received:2024-01-20 Published:2024-10-31
  • Corresponding author: Yan Zhuang
引用本文:

庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.

Yan Zhuang, Linfeng Dai, Haidong Zhang, Qiuhua Chen, Qingfang Nie. Risk factors of early survival for sepsis patients and construction of a Cox risk prediction model[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2024, 17(05): 372-378.

目的

探讨脓毒症患者早期生存的影响因素并构建Cox 风险预测模型。

方法

回顾2018 年1 月至2021 年12 月南京中医药大学附属医院ICU 收治的226例脓毒症患者资料,根据早期生存结局(28 d 存活)将患者分为存活组(183例)及死亡组(43例),采用单因素及多因素Cox 回归探讨脓毒症患者早期生存的独立影响因素。采用随机森林法筛选预测变量,建立脓毒症早期生存概率预测模型,使用列线图显示。分别绘制校准曲线、Brier 评分及连续秩概率得分(CRPS)曲线来评价模型的校准度及区分度,绘制临床决策曲线评价模型的临床适用度。

结果

多因素Cox 回归结果显示,年龄[风险比(HR)=1.032,95%置信区间(CI)(1.004,1.062),P=0.025]及序贯器官衰竭估计(SOFA)评分[HR=1.165,95%CI(1.017,1.335),P=0.027]为脓毒症患者早期生存的独立预测变量。采用随机森林法筛选出6 个预测变量(年龄、SOFA 评分、脑钠肽、血乳酸、D-二聚体及活化部分凝血酶原时间),构建Cox 风险比例模型并绘制列线图。校准曲线显示模型具有较好的校准度,模型Brier 评分及CRPS 曲线显示预测模型的总体Brier 评分小于0.20,总体CRPS 小于0.15。临床决策曲线显示预测模型的临床适用度尚可。

结论

本研究构建的脓毒症早期生存Cox 风险预测模型具有较好的临床预测能力及适用度。

Objective

To investigate risk factors of early survival of sepsis patients and develop a Cox risk prediction model.

Methods

Data of 226 septic patients who were admitted to the ICU of the Affiliated Hospital of Nanjing University of Chinese Medicine from January 2018 to December 2021 were retrospectively analyzed.According to their early survival (28 days) outcomes, patients were divided into a survival group (n=183) and a death group (n=43).Univariate and multivariate Cox regression was used to explore independent risk factors of early survival of sepsis patients.A random forest algorithm was used to screen predictive variables and a nomogram was constructed.A calibration curve, a Brier score and a continuous rank probability score (CRPS) curve were constructed to evaluate the distinction and calibration of the nomogram.A clinical decision curve was drawn to evaluate the clinical applicability of the nomogram.

Results

Multivariate Cox regression showed that age [hazard ratio (HR) = 1.032,95% confidence interval (CI) (1.004, 1.062), P = 0.025] and sequential organ failure assessment (SOFA) score [HR = 1.165, 95%CI (1.017, 1.335), P = 0.027] were independent risk factors of early survival of sepsis patients.Six predictive variables (age, SOFA score, brian natriuretic peptide, lactatic acid, activated partial thromboplastin time and D-Dimer) were screened by the random forest algorithm and a nomogram was constructed.The calibration curve showed that the nomogram had a good fitting degree.The Brier score and CRPS curve showed that the total Brier score was less than 0.20 and the total CRPS was less than 0.15.The clinical decision curve showed that the prediction model had good clinical applicability.

Conclusion

The Cox risk model for early survival of sepsis patients has good clinical predictive ability and applicability.

表1 脓毒症患者早期生存影响因素的单因素Cox 回归分析
图1 年龄、SOFA 评分预测脓毒症患者7、14、28 d 生存概率的ROC 曲线 注:SOFA.序贯器官衰竭估计;ROC.受试者工作特征
表2 脓毒症早期生存影响因素的多因素Cox 回归分析
图2 随机森林法预测变量筛选过程 注:a 图为不同决策树数量时随机森林误差率;b 图为自变量重要性评分;SOFA.序贯器官衰竭估计;APACHE.急性病生理学和长期健康评价;AST.天冬氨酸氨基转移酶;CHD.冠状动脉粥样硬化性心脏病;APTT.活化部分凝血酶原时间
图3 筛选出的6 个预测变量的风险得分图 注:a 图为风险得分,按照界值0.58 分为高低风险;b 图为风险得分与生存时间的散点图;c 图为不同变量分险评分热图;SOFA.序贯器官衰竭估计;APTT.活化部分凝血酶原时间
图4 脓毒症患者早期生存预测模型列线图 注:SOFA.序贯器官衰竭估计;APTT.活化部分凝血酶原时间
图5 脓毒症患者早期(7、14、28 d)生存预测模型不同时间的校准曲线
图6 不同病死率组脓毒症患者早期生存预测模型及总体评分曲线 注:CRPS.连续秩概率得分;按整体病死率分四组:0 ~<25%,25%~<50%,50%~<75%,75%~100%
图7 脓毒症患者早期生存预测模型的临床决策曲线
1
Singer M, Deutschman CS, Seymour CW, et al.The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J].JAMA, 2016, 315 (8): 801-810.
2
Evans L, Rhodes A, Alhazzani W, et al.Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021 [J].Crit Care Med,2021, 49 (11): e1063-e1143.
3
Fleischmann-Struzek C, Mellhammar L, Rose N, et al.Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis [J].Intensive Care Med, 2020, 46 (8): 1552-1562.
4
Balachandran VP, Gonen M, Smith JJ, et al.Nomograms in oncology: more than meets the eye [J].Lancet Oncol, 2015, 16 (4): e173-e180.
5
陶立元,张华,赵一鸣.列线图的制作要点及其应用[J].中华儿科杂志,2017,55(5):323.
6
Takegawa R, Kabata D, Shimizu K, et al.Serum albumin as a risk factor for death in patients with prolonged sepsis: an observational study [J].J Crit Care, 2019 (51): 139-144.
7
Vélez JW, Aragon DC, Donadi EA, et al.Risk factors for mortality from sepsis in an intensive care unit in Ecuador: a prospective study [J].Medicine (Baltimore),2022, 101 (11): e29096.
8
Yao L, Zhang L, Zhou C.Analysis of prognostic risk factors of sepsis patients in intensive care unit based on data analysis [J].J Healthc Eng, 2022 (2022):3746640.
9
Kingren MS, Starr ME, Saito H.Divergent sepsis pathophysiology in older adults[J].Antioxid Redox Signal,2021, 35 (16): 1358-1375.
10
Kashyap R, Sherani KM, Dutt T, et al.Current utility of sequential organ failure assessment score: a literature review and future directions [J].Open Respir Med J,2021 (15): 1-6.
11
张靖垚,陈瑞,童颖目,等.器官储备功能在脓毒症中的作用及应用[J].中华消化外科杂志,2022,21(12):1518-1523.
12
Pawar RD, Shih JA, Balaji L, et al.Variation in SOFA(sequential organ failure assessment) score performance in different infectious states[J].J Intensive Care Med, 2021 36 (10): 1217-1222.
13
Abdullah SMOB, Sorensen RH, Nielsen FE.Prognostic accuracy of SOFA, qSOFA, and SIRS for mortality among emergency department patients with infections[J].Infect Drug Resist, 2021 (14): 2763-2775.
14
McCarthy SL, Stewart L, Shaikh F, et al.Prognostic value of sequential organ failure assessment (SOFA)score in critically-ill combat-injured patients [J].J Intensive Care Med, 2022, 37 (11): 1426-1434.
15
庄燕,张海东,戴林峰,等.脓毒症心肌功能障碍及其预后影响因素研究[J].实用心脑肺血管病杂志,2022,30(11):47-52,56.
16
赵洪峰,王淑颖,胡炜,等.体外膜肺氧合相关血流感染危险因素及预测模型建立[J/CD].中华危重症医学杂志(电子版),2023,16(2):98-104.
17
莫小乔,胡喆莹,廖冬花,等.脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J/CD].中华危重症医学杂志(电子版),2023,16(3):198-206.
18
庄燕,张海东,戴林峰,等.脓毒症心肌功能障碍危险因素及临床预测模型的构建[J].中国中西医结合急救杂志,2022,29(3):262-267.
19
Yu ZJ, Dou Z, Li J, et al.Nomogram for predicting in-hospital mortality in infective endocarditis based on early clinical features and treatment options [J].Front Cardiovasc Med, 2022 (9): 882869.
20
陈清,胡雨峰,林素涵,等.早期预测新型冠状病毒肺炎患者病情严重程度列线图的建立及应用[J/CD].中华危重症医学杂志(电子版),2020,13(4):258-263.
21
Moons KGM, Wolff RF, Riley RD, et al.PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration[J].Ann Intern Med, 2019, 170 (1): W1-W33.
[1] 胡可, 鲁蓉. 基于多参数超声特征的中老年女性压力性尿失禁诊断模型研究[J]. 中华医学超声杂志(电子版), 2024, 21(05): 477-483.
[2] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[3] 蒲彦婷, 吴翠先, 兰玉梅. 类风湿关节炎患者骨质疏松症风险预测列线图模型构建[J]. 中华关节外科杂志(电子版), 2024, 18(05): 596-603.
[4] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[5] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[6] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[7] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[8] 周艳, 李盈, 周小兵, 程发辉, 何恒正. 不同类型补片联合Nissen 胃底折叠术修补食管裂孔疝的疗效及复发潜在危险因素[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 528-533.
[9] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
[10] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[11] 单良, 刘怡, 于涛, 徐丽. 老年股骨颈骨折术后患者心理弹性现状及影响因素分析[J]. 中华老年骨科与康复电子杂志, 2024, 10(05): 294-300.
[12] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[13] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[14] 刘志超, 胡风云, 温春丽. 山西省脑卒中危险因素与地域的相关性分析[J]. 中华脑血管病杂志(电子版), 2024, 18(05): 424-433.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要