切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2021, Vol. 14 ›› Issue (03) : 180 -186. doi: 10.3877/cma.j.issn.1674-6880.2021.03.002

论著

N-乙酰半胱氨酸对脓毒症小鼠急性肾损伤的保护作用及机制研究
樊恒1, 乐健伟1, 叶继辉1, 孙敏1, 朱建华1,()   
  1. 1. 315010 浙江宁波,宁波市第一医院重症医学科
  • 收稿日期:2020-10-06 出版日期:2021-06-30
  • 通信作者: 朱建华
  • 基金资助:
    浙江省自然科学基金项目(LQ18H150001); 浙江省医药卫生科技计划项目(2020KY815、2020KY828)

Protective effect and mechanism of N-acetylcysteine on acute kidney injury in septic mice

Heng Fan1, Jianwei Le1, Jihui Ye1, Min Sun1, Jianhua Zhu1,()   

  1. 1. Department of Intensive Care Unit, Ningbo First Hospital, Ningbo 315010, China
  • Received:2020-10-06 Published:2021-06-30
  • Corresponding author: Jianhua Zhu
引用本文:

樊恒, 乐健伟, 叶继辉, 孙敏, 朱建华. N-乙酰半胱氨酸对脓毒症小鼠急性肾损伤的保护作用及机制研究[J/OL]. 中华危重症医学杂志(电子版), 2021, 14(03): 180-186.

Heng Fan, Jianwei Le, Jihui Ye, Min Sun, Jianhua Zhu. Protective effect and mechanism of N-acetylcysteine on acute kidney injury in septic mice[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2021, 14(03): 180-186.

目的

探讨N-乙酰半胱氨酸(NAC)对脓毒症小鼠急性肾损伤(AKI)的保护作用及其机制。

方法

将60只小鼠分为假手术组、脓毒症AKI组(SAKI组)和SAKI + NAC组,每组各20只。采用盲肠结扎穿刺法(CLP)构建SAKI小鼠模型,其中SAKI + NAC组在使用NAC(50 mg / kg)预处理3 d后行CLP。假手术组小鼠仅进行外科手术,不予CLP。模型构建成功后24 h处死小鼠,采用苏木素-伊红(HE)染色法评估小鼠肾组织病理损伤,比较3组小鼠血清肌酐、血尿素氮、肿瘤坏死因子α(TNF-α)、白细胞介素1β(IL-1β)、IL-6、病理学评分、丙二醛、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶、肾组织细胞凋亡情况以及Toll样受体4(TLR4)、核因子κB(NF-κB)、Caspase-3、Bax蛋白表达水平。

结果

HE染色结果显示,假手术组小鼠肾组织切片中肾小球、肾小管和血管结构清晰正常;SAKI组小鼠可见肾小球破裂、广泛的肾小管坏死和刷状缘的丧失,间质大量炎症细胞浸润;SAKI + NAC组小鼠肾组织损伤明显减轻,肾小球、肾小管上皮细胞可见充血水肿,间质炎症细胞明显减少。假手术组、SAKI组和SAKI + NAC组小鼠血清肌酐[(39.0 ± 1.8)、(129.6 ± 4.8)、(81.7 ± 2.0)μmol / L]、血尿素氮[(6.65 ± 0.29)、(24.78 ± 0.71)、(15.45 ± 0.40)mmol / L]、TNF-α [(16.8 ± 0.4)、(43.5 ± 1.0)、(22.0 ± 0.6)ng / L]、IL-1β [(15.2 ± 0.7)、(44.8 ± 1.0)、(25.5 ± 0.8)ng / L]、IL-6 [(20.8 ± 0.4)、(70.6 ± 2.0)、(35.8 ± 1.2)ng / L]、病理学评分[(0.65 ± 0.11)、(3.55 ± 0.14)、(2.00 ± 0.15)分]、丙二醛[(25.1 ± 0.7)、(85.3 ± 1.1)、(40.1 ± 1.6)nmol / g]、SOD [(90.4 ± 1.4)、(22.4 ± 0.8)、(70.7 ± 2.5)U / mg]、GSH-Px [(336.2 ± 5.5)、(181.1± 2.5)、(265.0 ± 6.4)U / mg]、过氧化氢酶[(14.9 ± 0.6)、(5.7 ± 0.4)、(8.4 ± 0.4)U / mg]、TUNEL阳性细胞数[(1.35 ± 0.20)、(13.55 ± 0.72)、(8.25 ± 0.42)个]以及TLR4 [(0.14 ± 0.03)、(0.40 ± 0.03)、(0.18 ± 0.03)]、NF-κB [(0.20 ± 0.04)、(0.66 ± 0.05)、(0.16 ± 0.03)]、Caspase-3 [(0.152 ± 0.027)、(0.464 ± 0.061)、(0.147 ± 0.022)]和Bax [(0.14 ± 0.03)、(0.71 ± 0.03)、(0.15 ± 0.04)]蛋白表达水平比较,差异均有统计学意义(F = 204.316、328.913、378.460、327.102、344.226、123.104、709.235、421.732、233.016、104.521、153.920、127.135、260.514、115.960、505.826,P均< 0.001)。进一步两两比较发现,SAKI + NAC组血清肌酐、血尿素氮、TNF-α、IL-1β、IL-6、病理学评分、丙二醛、TUNEL阳性细胞数以及TLR4、NF-κB、Caspase-3和Bax蛋白表达水平均较SAKI组显著降低,SOD、GSH-Px和过氧化氢酶水平均较SAKI组显著升高(P均< 0.05)。

结论

NAC对脓毒症小鼠AKI有显著的保护作用,其具体机制与抑制肾组织细胞炎症反应、抗氧化损伤和抗细胞凋亡相关。

Objective

To investigate the protective effect and mechanism of N-acetylcysteine (NAC) on acute kidney injury (AKI) in septic mice.

Methods

Sixty mice were divided into a sham operation group (sham group), a septic AKI group (SAKI group) and a SAKI + NAC group, with 20 mice in each group. The SAKI mouse model was constructed by cecal ligation and puncture (CLP), and mice in the SAKI + NAC group were performed CLP after pretreatment with NAC (50 mg / kg) for 3 d. Mice in the sham group only underwent surgery without CLP. All mice were sacrificed when the model was successfully constructed for 24 h, and the renal tissue pathological injury was evaluated by hematoxylin-eosin (HE) staining. The serum creatinine, blood urea nitrogen, tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), IL-6, pathological score, malondialdehyde, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase and renal tissue apoptosis were compared among these three groups, as well as protein levels of Toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), Caspase-3 and Bax.

Results

HE staining showed that the glomerular, tubular and vascular structures were clear and normal in the renal tissue sections of mice in the sham group. The glomerular rupture, extensive tubular necrosis, loss of brush border and a large number of interstitial inflammatory cells were seen in the SAKI group. The renal tissue damage was alleviated, the glomerular and renal tubular epithelial cells revealed hyperemia and edema, and the interstitial inflammatory cells significantly decreased in the SAKI + NAC group. The serum creatinine [(39.0 ± 1.8), (129.6 ± 4.8), (81.7 ± 2.0) μmol / L], blood urea nitrogen [(6.65 ± 0.29), (24.78 ± 0.71), (15.45 ± 0.40) mmol / L], TNF-α [(16.8 ± 0.4), (43.5 ± 1.0), (22.0 ± 0.6) ng / L], IL-1β [(15.2 ± 0.7), (44.8 ± 1.0), (25.5 ± 0.8) ng / L], IL-6 [(20.8 ± 0.4), (70.6 ± 2.0), (35.8 ± 1.2) ng / L], pathological score [(0.65 ± 0.11), (3.55 ± 0.14), (2.00 ± 0.15)], malondialdehyde [(25.1 ± 0.7), (85.3 ± 1.1), (40.1 ± 1.6) nmol / g], SOD [(90.4 ± 1.4), (22.4 ± 0.8), (70.7 ± 2.5) U / mg], GSH-Px [(336.2 ± 5.5), (181.1 ± 2.5), (265.0 ± 6.4) U / mg], catalase [(14.9 ± 0.6), (5.7 ± 0.4), (8.4 ± 0.4) U / mg], TUNEL positive cells [(1.35 ± 0.20), (13.55 ± 0.72), (8.25 ± 0.42) cells], TLR4 protein [(0.14 ± 0.03), (0.40 ± 0.03), (0.18 ± 0.03)], NF-κB protein [(0.20 ± 0.04), (0.66 ± 0.05), (0.16 ± 0.03)], Caspase-3 protein [(0.152 ± 0.027), (0.464 ± 0.061), (0.147 ± 0.022)] and Bax protein [(0.14 ± 0.03), (0.71 ± 0.03), (0.15 ± 0.04)] levels were statistically significantly different in the sham group, SAKI group and SAKI + NAC group (F = 204.316, 328.913, 378.460, 327.102, 344.226, 123.104, 709.235, 421.732, 233.016, 104.521, 153.920, 127.135, 260.514, 115.960, 505.826; all P < 0.001). Further comparisons revealed that the serum creatinine, blood urea nitrogen, TNF-α, IL-1β, IL-6, pathological score, maldialdehyde, TUNEL positive cells and protein levels of TLR4, NF-κB, Caspase-3 and Bax were significantly lower in the SAKI + NAC group than in the SAKI group, and the SOD, GSH-Px and catalase levels were significantly higher (all P < 0.05).

Conclusion

NAC has a significant protective effect on AKI in septic mice, and its specific mechanisms are related to the inhibition of renal cell inflammation, anti-oxidative damage and anti-apoptosis.

表1 3组小鼠肾功能指标和血清促炎症因子表达水平比较( ± s
图1 3组小鼠肾组织病理学改变
表2 3组小鼠肾组织氧化因子表达水平比较( ± s
图2 3组小鼠肾组织细胞凋亡情况
表3 3组小鼠肾组织TLR4、NF-κB、Caspase-3和Bax蛋白表达水平比较( ± s
1
Srisawat N, Kellum JA. The role of biomarkers in a-cute kidney injury[J]. Crit Care Clin, 2020, 36 (1): 125-140.
2
Mercado MG, Smith DK, Guard EL. Acute kidney in-jury: diagnosis and management[J]. Am Fam Physician, 2019, 100 (11): 687-694.
3
Fan H, Zhao Y, Sun M, et al. Urinary neutrophil ge-latinase-associated lipocalin, kidney injury molecule-1, N-acetyl-β-D-glucosaminidase levels and mortality risk in septic patients with acute kidney injury[J]. Arch Med Sci, 2018, 14 (6): 1381-1386.
4
樊恒,乐健伟,孙敏,等. N-乙酰半胱氨酸上调细胞FLICE抑制蛋白表达对脓毒症小鼠急性肾损伤的保护作用及其机制研究[J/CD]. 中华危重症医学杂志(电子版),2018,11(4):250-255.
5
Skube SJ, Katz SA, Chipman JG, et al. Acute kidney injury and sepsis[J]. Surg Infect (Larchmt), 2018, 19 (2): 216-224.
6
Wang K, Xie S, Xiao K, et al. Biomarkers of sepsis-induced acute kidney injury[J]. Biomed Res Int, 2018 (2018): 6937947.
7
张建楠,刘文,昌广平,等. 核苷酸结合寡聚化结构域样受体蛋白3炎性小体在脓毒症急性肾损伤大鼠肾脏组织的表达及其影响[J/CD]. 中华危重症医学杂志(电子版),2020,13(1):55-59.
8
Lebourgeois S, González-Marín MC, Antol J, et al. E-valuation of N-acetylcysteine on ethanol self-administration in ethanol-dependent rats[J]. Neuropharmacology, 2019 (150): 112-120.
9
Palli E, Makris D, Papanikolaou J, et al. The impact of N-acetylcysteine and ascorbic acid in contrast-induced nephropathy in critical care patients: an open-label randomized controlled study[J]. Crit Care, 2017, 21 (1): 269.
10
Niu X, Yao Q, Li W, et al. Harmine mitigates LPS-induced acute kidney injury through inhibition of the TLR4-NF-κB / NLRP3 inflammasome signalling pathway in mice[J]. Eur J Pharmacol, 2019 (849): 160-169.
11
Shen WC, Liang CJ, Huang TM, et al. Indoxyl sulfate enhances IL-1β-induced E-selectin expression in endothelial cells in acute kidney injury by the ROS / MAPKs / NFκB / AP-1 pathway[J]. Arch Toxicol, 2016, 90 (11): 2779-2792.
12
Fan H, Le JW, Zhu JH. Protective effect of N-ace-tylcysteine pretreatment on acute kidney injury in septic rats[J]. J Surg Res, 2020 (254): 125-134.
13
Li C, Xie N, Li Y, et al. N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation[J]. Free Radic Biol Med, 2019 (130): 512-527.
14
Gu Y, Huang F, Wang Y, et al. Connexin32 plays a crucial role in ROS-mediated endoplasmic reticulum stress apoptosis signaling pathway in ischemia reperfusion-induced acute kidney injury[J]. J Transl Med, 2018, 16 (1): 117.
15
Fox BM, Gil HW, Kirkbride-Romeo L, et al. Meta-bolomics assessment reveals oxidative stress and altered energy production in the heart after ischemic acute kidney injury in mice[J]. Kidney Int, 2019, 95 (3): 590-610.
16
Gong X, Duan Y, Zheng J, et al. Nephroprotective e-ffects of N-acetylcysteine amide against contrast-induced nephropathy through upregulating thioredoxin-1, inhibiting ASK1 / p38MAPK pathway, and suppressing oxidative stress and apoptosis in rats[J]. Oxid Med Cell Longev, 2016 (2016): 8715185.
17
Rousta AM, Mirahmadi SM, Shahmohammadi A, et al. Protective effect of sesamin in lipopolysaccharide-induced mouse model of acute kidney injury via attenuation of oxidative stress, inflammation, and apoptosis[J]. Immunopharmacol Immunotoxicol, 2018, 40 (5): 423-429.
18
Fan H, Zhao Y, Zhu JH. S-nitrosoglutathione protects lipopolysaccharide-induced acute kidney injury by inhibiting toll-like receptor 4-nuclear factor-κB signal pathway[J]. J Pharm Pharmacol, 2019, 71 (8): 1255-1261.
19
Vasco CF, Watanabe M, Fonseca CDD, et al. Sepsis-induced acute kidney injury: kidney protection effects by antioxidants[J]. Rev Bras Enferm, 2018, 71 (4): 1921-1927.
20
Shimizu MH, Gois PH, Volpini RA, et al. N-acety-lcysteine protects against star fruit-induced acute kidney injury[J]. Ren Fail, 2017, 39 (1): 193-202.
21
Xia Q, Liu C, Zheng X. N-acetylcysteine ameliorates contrast-induced kidney injury in rats with unilateral hydronephrosis[J]. Mol Med Rep, 2018, 17 (2): 2203-2210.
[1] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[4] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[5] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[6] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[7] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[8] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[9] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[10] 陈曦, 吴宗盛, 郑明珠, 邱海波. 胸腺萎缩在脓毒症免疫紊乱中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 379-383.
[11] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[12] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[13] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[14] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[15] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?