切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2017, Vol. 10 ›› Issue (03) : 153 -158. doi: 10.3877/cma.j.issn.1674-6880.2017.03.003

所属专题: 文献

论著

乌司他丁对脓毒症大鼠急性肺损伤的保护作用及其机制研究
张慧慧1, 蔡国龙1,(), 胡才宝1, 颜默磊1   
  1. 1. 310007 杭州,浙江医院重症医学科
  • 收稿日期:2017-03-09 出版日期:2017-06-01
  • 通信作者: 蔡国龙
  • 基金资助:
    浙江省自然基金项目(LY14H150007); 浙江省医药卫生科技计划平台重点项目(2013ZDA001); 浙江省医药卫生重大科技计划项目(WKJ2012-2-020)

Protective effect of ulinastatin on acute lung injury in sepsis rats and its mechanism

Huihui Zhang1, Guolong Cai1,(), Caibao Hu1, Molei Yan1   

  1. 1. Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou 310007, China
  • Received:2017-03-09 Published:2017-06-01
  • Corresponding author: Guolong Cai
  • About author:
    Corresponding author: Cai Guolong, Email: caiguolong@126.com
引用本文:

张慧慧, 蔡国龙, 胡才宝, 颜默磊. 乌司他丁对脓毒症大鼠急性肺损伤的保护作用及其机制研究[J]. 中华危重症医学杂志(电子版), 2017, 10(03): 153-158.

Huihui Zhang, Guolong Cai, Caibao Hu, Molei Yan. Protective effect of ulinastatin on acute lung injury in sepsis rats and its mechanism[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2017, 10(03): 153-158.

目的

研究乌司他丁对脂多糖诱导的脓毒症大鼠急性肺损伤的保护作用及其机制。

方法

将52只大鼠分为乌司他丁组和对照组,每组26只。两组大鼠腹腔注射脂多糖溶液(10 mg/kg)以制备脓毒症模型,分别于建模前18 h和3 h,乌司他丁组大鼠给予乌司他丁(100 000 U/kg),对照组注射等量生理盐水。于造模成功后0.5、2、4、12、24、72 h各时间点采血检测肿瘤坏死因子α(TNF-α)、白细胞介素6(IL-6)、IL-10及肺泡灌洗液蛋白浓度,并通过光学显微镜观察肺组织病理学改变。

结果

两组大鼠血浆TNF-α、IL-6、IL-10及肺泡灌洗液总蛋白浓度各时间点比较,差异均有统计学意义(F = 5.899,P = 0.040;F = 7.932,P = 0.029;F = 18.450,P = 0.005;F = 6.467,P = 0.038),且与对照组相比较,乌司他丁组在0.5、2、4、12、24、72 h各时间点的血浆TNF-α[(21.6 ± 3.8)ng/L vs.(14.8 ± 2.5)ng/L,(69.2 ± 3.2)ng/L vs.(48.8 ± 3.9)ng/L,(74.8 ± 6.9)ng/L vs.(56.3 ± 4.2)ng/L,(120.2 ± 43.8)ng/L vs.(106.4 ± 65.8)ng/L,(190.2 ± 30.4)ng/L vs.(119.8 ± 28.9)ng/L,(159.7 ± 10.5)ng/L vs.(112.3 ± 10.2)ng/L]、IL-6[(145 ± 6)ng/L vs.(119 ± 5)ng/L,(344 ± 19)ng/L vs.(225 ± 22)ng/L,(458 ± 36)ng/L vs.(273 ± 28)ng/L,(949 ± 64)ng/L vs.(328 ± 27)ng/L,(841 ± 61)ng/L vs.(306 ± 6)ng/L,(899 ± 35)ng/L vs.(278 ± 16)ng/L]及肺泡灌洗液总蛋白浓度[(320 ± 8)mg/L vs.(290 ±17)mg/L,(400 ± 7)mg/L vs.(336 ± 9)mg/L,(536 ± 10)mg/L vs.(492 ± 14)mg/L,(806 ± 10)mg/L vs.(608 ± 17)mg/L,(781 ± 17)mg/L vs.(579 ± 16)mg/L,(662 ± 24)mg/L vs.(505 ± 9)mg/L]均明显降低(P均< 0.05),而血浆IL-10浓度[(5.7 ± 0.8)ng/L vs.(11.7 ± 0.9)ng/L,(17.2 ± 1.6)ng/L vs.(31.9 ± 2.6)ng/L,(22.3 ± 2.1)ng/L vs.(54.7 ± 4.8)ng/L,(42.3 ± 4.9)ng/L vs.(80.7 ±1.9)ng/L,(29.7 ± 1.4)ng/L vs.(69.4 ± 3.4)ng/L,(21.4 ± 2.9)ng/L vs.(74.3 ± 5.5)ng/L]均明显升高(P均< 0.05)。对照组大鼠肺泡间隔增厚,间质充血水肿,炎性细胞浸润,肺泡塌陷,而乌司他丁组大鼠上述病理学改变明显减轻。

结论

乌司他丁是通过下调TNF-α、IL-6,上调IL-10水平,从而抑制炎症细胞在肺部的浸润以及肺组织中蛋白酶的表达来保护脂多糖诱导的脓毒症大鼠急性肺损伤。

Objective

To observe the effect and mechanism of ulinastatin on protecting acute lung injury (ALI) in sepsis rats induced by lipopolysaccharide (LPS).

Methods

Fifty-two rats were randomly assigned to the ulinastatin group (n = 26) and control group (n = 26). All the rats were given LPS (10 mg/kg) intraperitoneally, and rats in the ulinastatin group were injected ulinastatin (100 000 U/kg) on 18, 3 h before modeling, and rats in the control group were received equivalence saline. The levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), IL-10 and total protein levels in bronchoalveolar lavage fluid (BALF) were detected at 0.5, 2, 4, 12, 24 and 72 h after modeling. The pathological changes in the lung tissues were observed by optical microscope.

Results

The levels of TNF-α, IL-6, IL-10 and total protein in BALF all showed significant differences between the two groups (F = 5.899, P = 0.040; F = 7.932, P = 0.029; F = 18.450, P = 0.005; F = 6.467, P = 0.038). And compared with the control group, TNF-α [(21.6 ± 3.8) ng/L vs. (14.8 ± 2.5) ng/L, (69.2 ± 3.2) ng/L vs. (48.8 ± 3.9) ng/L, (74.8 ± 6.9) ng/L vs. (56.3 ± 4.2) ng/L, (120.2 ± 43.8) ng/L vs. (106.4 ± 65.8) ng/L, (190.2 ± 30.4) ng/L vs. (119.8 ± 28.9) ng/L, (159.7 ± 10.5) ng/L vs. (112.3 ± 10.2) ng/L], IL-6 [(145 ± 6) ng/L vs. (119 ± 5) ng/L, (344 ± 19) ng/L vs. (225 ± 22) ng/L, (458 ± 36) ng/L vs. (273 ± 28) ng/L, (949 ± 64) ng/L vs. (328 ± 27) ng/L, (841 ± 61) ng/L vs. (306 ± 6) ng/L, (899 ± 35) ng/L vs. (278 ± 16) ng/L] and total protein in BALF [(320 ± 8) mg/L vs. (290 ± 17) mg/L, (400 ± 7) mg/L vs. (336 ± 9) mg/L, (536 ± 10) mg/L vs. (492 ± 14) mg/L, (806 ± 10) mg/L vs. (608 ± 17) mg/L, (781 ± 17) mg/L vs. (579 ±16) mg/L, (662 ± 24) mg/L vs. (505 ± 9) mg/L] were much lower, and the IL-10 levels [(5.7 ± 0.8) ng/L vs. (11.7 ± 0.9) ng/L, (17.2 ± 1.6) ng/L vs. (31.9 ± 2.6) ng/L, (22.3 ± 2.1) ng/L vs. (54.7 ± 4.8) ng/L, (42.3 ± 4.9) ng/L vs. (80.7 ±1.9) ng/L, (29.7 ± 1.4) ng/L vs. (69.4 ± 3.4) ng/L, (21.4 ± 2.9) ng/L vs. (74.3 ± 5.5) ng/L] were much higher in the ulinastatin group at 0.5, 2, 4, 12, 24, and 72 h (all P < 0.05). The optical microscope showed alveolar wall tissue thickening, mesenchyma hyperemia and edema, inflammatory cellular infiltration and alveolar collapse in the control group, and above pathology changes were significantly alleviated in the ulinastatin group.

Conclusion

Ulinastatin can protect sepsis rats with ALI through reducing the levels of TNF-α and IL-6, promoting IL-10 levels and thereby inhibiting the neutrophil infiltration and protease expression in the lungs.

表1 两组脓毒症大鼠血浆TNF-α、IL-6和IL-10浓度各时间点的比较(ng/L, ± s
表2 两组脓毒症大鼠肺泡灌洗液总蛋白浓度不同时间点的变化(mg/L, ± s
图1 乌司他丁组和对照组各时间点光学显微镜下观察肺组织情况。注:a、d分别为0.5 h乌司他丁组和对照组,可见肺组织结构完整,肺泡壁结构完整,肺泡内未见水肿液及肺泡萎陷;b为12 h乌司他丁组肺组织结构清晰,肺泡间隔稍增厚,肺泡间质水肿,可见少量炎性细胞浸润;c为72 h乌司他丁组肺泡间隔增厚,肺泡间质水肿,肺泡萎缩塌陷;e为12 h对照组肺泡间隔稍增厚,肺泡内可见红细胞渗出,间质水肿,部分肺泡萎缩塌陷;f为72 h对照组肺泡间隔显著增厚,间质充血水肿,大量炎性细胞浸润,肺泡塌陷,程度明显甚于乌司他丁组(HE染色 × 400)
1
Bae HB, Jeong CW, Li M, et al. Effects of urinary trypsin inhibitor on lipopolysaccharide-induced acute lung injury in rabbits[J]. Inflammation, 2012, 35 (1): 176-182.
2
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition[J]. Jama, 2012, 307 (23): 2526-2533.
3
汪洋,陈上仲,陈昌勤,等. 序贯器官衰竭估计评分用于脓毒症病情评估的研究进展[J/CD]. 中华危重症医学杂志(电子版),2016,9(6):422-425.
4
Fink MP. Animal models of sepsis[J]. Virulence, 2014, 5 (1): 143-153.
5
Luo Y, Che W, Zhao M. Ulinastatin post-treatment attenuates lipopolysaccharide-induced acute lung injury in rats and human alveolar epithelial cells[J]. I Int J Mol Med, 2017, 39 (2): 297-306.
6
Chaudhry H, Zhou J, Zhong Y, et al. Role of Cytokines as a Double-edged Sword in Sepsis[J]. In Vivo, 2013, 27 (6): 669-684.
7
Shu H, Liu K, He Q, et al. Ulinastatin, a protease inhibitor, may inhibit allogeneic blood transfusion-associated pro-inflammatory cytokines and systemic inflammatory response syndrome and improve postoperative recovery[J]. Blood transfus, 2014 (12 Suppl 1): s109-s118.
8
Zhang Y, Zeng Z, Cao Y, et al. Effect of urinary protease inhibitor (ulinastatin) on cardiopulmonary bypass: a meta-analysis for China and Japan[J]. Plos One, 2014, 9 (12): e113973.
9
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315 (8): 801-810.
10
Lin WC, Chen CW, Huang YW, et al. Kallistatin protects against sepsis-related acute lung injury via inhibiting inflammation and apoptosis[J]. Sci Rep, 2015 (5): 12463.
11
Xue M, Sun Z, Shao M, et al. Diagnostic and prognostic utility of tissue factor for severe sepsis and sepsis-induced acute lung injury[J]. J Transl Med, 2015 (13): 172.
12
Wang SY, Li ZJ, Wang X, et al. Effect of ulinastatin on HMGB1 expression in rats with acute lung injury induced by sepsis[J]. Genet Mol Res, 2015, 14 (2): 4344-4353.
13
Wang N, Liu X, Zheng X, et al. Ulinastatin is a novel candidate drug for sepsis and secondary acute lung injury, evidence from an optimized CLP rat model[J]. Int Immunopharmacol, 2013, 17 (3): 799-807.
14
Huang N, Wang F, Wang Y, et al. Ulinastatin improves survival of septic mice by suppressing inflammatory response and lymphocyte apoptosis[J]. J Surg Res, 2013, 182 (2): 296-302.
15
Matuschak GM, Lechner AJ. Acute lung injury and the acute respiratory distress syndrome: pathophysiology and treatment[J]. Mo Med, 2010, 107 (4): 252-258.
16
Tsujimoto H, Ono S, Majima T, et al. Neutrophil elastase, MIP-2, and TLR-4 expression during human and experimental sepsis[J]. Shock, 2005, 23 (1): 39-44.
17
李梁,郑立君. 乌司他丁治疗急性重症胰腺炎的meta分析[J]. 同济大学学报医学版,2013(1):62-68.
18
林建东,肖雄箭,廖秀玉,等. 乌司他丁对大鼠脓毒症急性肺损伤外周血淋巴细胞凋亡率及TNF-α、IL-6水平的影响[J]. 中华急诊医学杂志,2008,17(3):252-255.
19
Song D, Song G, Niu Y, et al. Ulinastatin activates haem oxygenase 1 antioxidant pathway and attenuates allergic inflammation[J]. Br J Pharmacol, 2014, 171 (19): 4399-4412.
20
Chen X, Wang Y, Luo H, et al. Ulinastatin reduces urinary sepsis-related inflammation by upregulating IL-10 and downregulating TNFα levels[J]. Mol Med Rep, 2013, 8 (1): 29-34.
[1] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[2] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[3] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[4] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[5] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[6] 靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.
[7] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[8] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[9] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[10] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[11] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[12] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要