1 |
Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Crit Care Med, 2021, 49 (11): e1063-e1143.
|
2 |
Zanotti-Cavazzoni SL, Hollenberg SM. Cardiac dysfunction in severe sepsis and septic shock[J]. Curr Opin Crit Care, 2009, 15 (5): 392-397.
|
3 |
Landesberg G, Gilon D, Meroz Y, et al. Diastolic dysfunction and mortality in severe sepsis and septic shock[J]. Eur Heart J, 2012, 33 (7): 895-903.
|
4 |
Herndon DN, Hart DW, Wolf SE, et al. Reversal of catabolism by beta-blockade after severe burns[J]. N Engl J Med, 2001, 345 (17): 1223-1229.
|
5 |
Suzuki T, Inoue K, Igarashi T, et al. Beta-blocker therapy preserves normal splenic T-lymphocyte numbers reduced in proportion to sepsis severity in a sepsis model[J]. Crit Care Res Pract, 2019: 8157482.
|
6 |
Levy B, Fritz C, Piona C, et al. Hemodynamic and anti-inflammatory effects of early esmolol use in hyperkinetic septic shock: a pilot study[J]. Crit Care, 2021, 25 (1): 21.
|
7 |
Narendra D, Tanaka A, Suen DF, et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy[J]. J Cell Biol, 2008, 183 (5): 795-803.
|
8 |
Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin[J]. PLoS Biol, 2010, 8 (1): e1000298.
|
9 |
Hasegawa D, Sato R, Prasitlumkum N, et al. Effect of ultrashort-acting β-blockers on mortality in patients with sepsis with persistent tachycardia despite initial resuscitation: a systematic review and meta-analysis of randomized controlled trials[J]. Chest, 2021, 159 (6): 2289-2300.
|
10 |
Wei C, Louis H, Schmitt M, et al. Effects of low doses of esmolol on cardiac and vascular function in experimental septic shock[J]. Crit Care, 2016, 20 (1):407.
|
11 |
刘新强,温妙云,李旭声,等. β1受体阻滞剂通过TLR4/NF-κB信号通路抑制脓毒症心肌炎症反应[J].中华危重病急救医学,2019,31(2):193-197.
|
12 |
郭玉红,刘清泉.脓毒症心肌功能障碍的研究进展[J].中华急诊医学杂志,2017,26(3):361-366.
|
13 |
Hamzaoui O, Teboul JL. The role of beta-blockers in septic patients[J]. Minerva Anestesiol, 2015, 81 (3): 312-319.
|
14 |
董小荣,方德舟,张蓓,等.早期应用艾司洛尔对脓毒症大鼠心肌损伤的实验研究[J].兰州大学学报(医学版),2018,44(4):33-39.
|
15 |
Lautz AJ, Zingarelli B. Age-dependent myocardial dysfunction in critically ill patients: role of mitochondrial dysfunction[J]. Int J Mol Sci, 2019, 20 (14): 3523.
|
16 |
周密,张琼,王强,等.远端肢体缺血后处理通过线粒体自噬减轻大鼠局灶型脑缺血再灌注损伤的研究[J/CD].中华危重症医学杂志(电子版),2020,13(4):241-246.
|
17 |
Tsubouchi K, Araya J, Kuwano K. PINK1-PARK2-mediated mitophagy in COPD and IPF pathogeneses[J]. Inflamm Regen, 2018 (38): 18.
|
18 |
Shires SE, Gustafsson AB. Regulating renewable energy: connecting ampkα2 to pink1 / parkin-mediated mitophagy in the heart[J]. Circ Res, 2018, 122 (5): 649-651.
|
19 |
Shibutani ST, Saitoh T, Nowag H, et al. Autophagy and autophagy-related proteins in the immune system[J]. Nat Immunol, 2015, 16 (10): 1014-1024.
|
20 |
刘颖,孟超,赵谊,等.自噬蛋白Beclin1及炎症因子表达在脓毒症急性肾损伤中的作用[J/CD].中华危重症医学杂志(电子版),2020,13(6):401-405.
|
21 |
李小静,李志锋,李显平,等.丹参酮IIA体外促进黑素瘤A375细胞自噬及信号通路的实验研究[J].中华皮肤科杂志,2017,50(1):29-32.
|
22 |
Sun Y, Cai Y, Zang QS. Cardiac autophagy in sepsis[J]. Cells, 2019, 8 (2): 141.
|
23 |
Sun Y, Yao X, Zhang QJ, et al. Beclin-1-dependent autophagy protects the heart during sepsis[J]. Circulation, 2018, 138 (20): 2247-2262.
|
24 |
江木秀,姜春明.线粒体自噬对脓毒症心肌的影响及信号转导途径研究进展[J].国际儿科学杂志,2020,47(7):477-480.
|
25 |
Mao JY, Su LX, Li DK, et al. The effects of UCP2 on autophagy through the AMPK signaling pathway in septic cardiomyopathy and the underlying mechanism[J]. Ann Transl Med, 2021, 9 (3): 259.
|
26 |
Kimmoun A, Louis H, Al Kattani N, et al. β1-adrenergic inhibition improves cardiac and vascular function in experimental septic shock[J]. Crit Care Med, 2015, 43 (9): e332-e340.
|
27 |
洪澄英,陈怀生,曹静,等. β受体拮抗剂对脓毒症大鼠心肌细胞线粒体损伤的保护作用[J].中国医科大学学报,2018,47(12):1123-1127.
|