1 |
Shankar-Hari M, Calandra T, Soares MP, et al. Reframing sepsis immunobiology for translation: towards informative subtyping and targeted immunomodulatory therapies[J]. Lancet Respir Med, 2024, 12 (4): 323-336.
|
2 |
Bauer M, Gerlach H, Vogelmann T, et al. Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019-results from a systematic review and meta-analysis[J]. Crit Care, 2020, 24 (1): 239.
|
3 |
Liu C, Zou Q, Tang H, et al. Melanin nanoparticles alleviate sepsis-induced myocardial injury by suppressing ferroptosis and inflammation[J]. Bioact Mater, 2022 (24): 313-321.
|
4 |
Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy[J]. Nat Rev Cardiol, 2021, 18 (6): 424-434.
|
5 |
Ahlstedt C, Sivapalan P, Kriz M, et al. Effects of restrictive fluid therapy on the time to resolution of hyperlactatemia in ICU patients with septic shock. A secondary post hoc analysis of the CLASSIC randomized trial[J]. Intensive Care Med, 2024, 50 (5): 678-686.
|
6 |
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315 (8): 801-810.
|
7 |
Fan M, Yang K, Wang X, et al. Lactate impairs vascular permeability by inhibiting HSPA12B expression via GPR81-dependent signaling in sepsis[J]. Shock, 2022, 58 (4): 304-312.
|
8 |
Zheng Z, Ma H, Zhang X, et al. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis[J]. J Infect Dis, 2017, 215 (9): 1396-1406.
|
9 |
Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid[J]. Nature, 2014, 513 (7519): 559-563.
|
10 |
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574 (7779): 575-580.
|
11 |
Merkuri F, Rothstein M, Simoes-Costa M. Histone lactylation couples cellular metabolism with developmental gene regulatory networks[J]. Nat Commun, 2024, 15 (1): 90.
|
12 |
Du S, Zhang X, Jia Y, et al. Hepatocyte HSPA12A inhibits macrophage chemotaxis and activation to attenuate liver ischemia/reperfusion injury via suppressing glycolysis-mediated HMGB1 lactylation and secretion of hepatocytes[J]. Theranostics, 2023, 13 (11): 3856-3871.
|
13 |
Pan RY, He L, Zhang J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease[J]. Cell Metab, 2022, 34 (4): 634-648.e6.
|
14 |
Xiong J, He J, Zhu J, et al. Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells[J]. Mol Cell, 2022, 82 (9): 1660-1677.e10.
|
15 |
Chen Y, Wu J, Zhai L, et al. Metabolic regulation of homologous recombination repair by MRE11 lactylation[J]. Cell, 2024, 187 (2): 294-311.e21.
|
16 |
Sun W, Jia M, Feng Y, et al. Lactate is a bridge linking glycolysis and autophagy through lactylation[J]. Autophagy, 2023, 19 (12): 3240-3241.
|
17 |
Qiao J, Tan Y, Liu H, et al. Histone H3K18 and Ezrin lactylation promote renal dysfunction in sepsis-associated acute kidney injury[J]. Adv Sci (Weinh), 2024, 11 (28): e2307216.
|
18 |
Yang K, Fan M, Wang X, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis[J]. Cell Death Differ, 2022, 29 (1): 133-146.
|
19 |
An S, Yao Y, Hu H, et al. PDHA1 hyperacetylation-mediated lactate overproduction promotes sepsis-induced acute kidney injury via Fis1 lactylation[J]. Cell Death Dis, 2023, 14 (7): 457.
|
20 |
Guo J, Miao Y, Nie F, et al. Zn-Shik-PEG nanoparticles alleviate inflammation and multi-organ damage in sepsis[J]. J Nanobiotechnology, 2023, 21 (1): 448.
|
21 |
Yang L, Xie M, Yang M, Y et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis[J]. Nat Commun, 2014 (5): 4436.
|
22 |
Meng X, Baine JM, Yan T, et al. Comprehensive analysis of lysine lactylation in rice (Oryza sativa) grains[J]. J Agric Food Chem, 2021, 69 (29): 8287-8297.
|
23 |
Ding T, Yang YH, Wang QC, et al. Global profiling of protein lactylation in Caenorhabditis elegans[J]. Proteomics, 2024, 24 (1-2): e2300185.
|
24 |
Zhao W, Yu H, Liu X, et al. Systematic identification of the lysine lactylation in the protozoan parasite Toxoplasma gondii[J]. Parasit Vectors, 2022, 15 (1): 180.
|
25 |
Zhang N, Jiang N, Yu L, et al. Protein lactylation critically regulates energy metabolism in the protozoan parasite Trypanosoma brucei[J]. Front Cell Dev Biol, 2021 (9):719720.
|
26 |
Drosatos K, Pollak NM, Pol CJ, et al. Cardiac myocyte KLF5 regulates ppara expression and cardiac function[J]. Circ Res, 2016, 118 (2): 241-253.
|
27 |
Zhang K, Wang Y, Chen S, et al. TREM2hi resident macrophages protect the septic heart by maintaining cardiomyocyte homeostasis[J]. Nat Metab, 2023, 5 (1): 129-146.
|
28 |
Wasyluk W, Nowicka-Stazka P, Zwolak A. Heart metabolism in sepsis-induced cardiomyopathy-unusual metabolic dysfunction of the heart[J]. Int J Environ Res Public Health, 2021, 18 (14): 7598.
|
29 |
Li Y, Yu J, Li R, et al. New insights into the role of mitochondrial metabolic dysregulation and immune infiltration in septic cardiomyopathy by integrated bioinformatics analysis and experimental validation[J]. Cell Mol Biol Lett, 2024, 29 (1): 21.
|
30 |
Wang Y, Shi Y, Shao Y, et al. S100A8/A9hi neutrophils induce mitochondrial dysfunction and PANoptosis in endothelial cells via mitochondrial complex I deficiency during sepsis[J]. Cell Death Dis, 2024, 15 (6): 462.
|
31 |
Japiassú AM, Santiago AP, d'Avila JC, et al. Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5'-triphosphate synthase activity[J]. Crit Care Med, 2011, 39 (5): 1056-1063.
|