切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2021, Vol. 14 ›› Issue (06) : 448 -452. doi: 10.3877/cma.j.issn.1674-6880.2021.06.002

论著

血糖间隙对非糖尿病急性ST段抬高型心肌梗死患者发生心肌缺血再灌注损伤的预测价值
齐疏影1, 李响,1, 刘飞1   
  1. 1. 100029 北京,首都医科大学附属北京安贞医院心内科
  • 收稿日期:2021-06-11 出版日期:2021-12-31
  • 通信作者: 李响
  • 基金资助:
    北京市属医院科研培育计划项目(PX2020025)

Predictive value of glycemic gap for myocardial ischemia reperfusion injury in non-diabetic patients with acute ST-segment elevation myocardial infarction

Shuying Qi1, Xiang Li,1, Fei Liu1   

  1. 1. Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
  • Received:2021-06-11 Published:2021-12-31
  • Corresponding author: Xiang Li
引用本文:

齐疏影, 李响, 刘飞. 血糖间隙对非糖尿病急性ST段抬高型心肌梗死患者发生心肌缺血再灌注损伤的预测价值[J/OL]. 中华危重症医学杂志(电子版), 2021, 14(06): 448-452.

Shuying Qi, Xiang Li, Fei Liu. Predictive value of glycemic gap for myocardial ischemia reperfusion injury in non-diabetic patients with acute ST-segment elevation myocardial infarction[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2021, 14(06): 448-452.

目的

探讨血糖间隙对非糖尿病急性ST段抬高型心肌梗死(STEMI)患者发生心肌缺血再灌注损伤(MIRI)的预测价值。

方法

选择2019年1月至12月就诊于首都医科大学附属北京安贞医院的541例非糖尿病STEMI患者。将男性、年龄、吸烟、发病时间、多支病变、入院时血糖(ABG)、糖化血红蛋白、血糖间隙、血肌酐、尿素氮、甘油三酯、总胆固醇、超敏C反应蛋白(hs-CRP)峰值、心肌肌钙蛋白I(cTNI)峰值纳入单因素Logistic回归分析,筛选出相关影响因素,之后纳入多因素Logistic回归分析,得到影响非糖尿病STEMI患者发生MIRI的独立危险因素。采用受试者工作特征(ROC)曲线分析其预测价值。

结果

经单因素Logistic回归分析,初步筛选出与非糖尿病STEMI患者发生MIRI有关的6个因素,包括ABG[比值比(OR)= 1.149,95%置信区间(CI)(1.037,1.273),P = 0.008]、血糖间隙[OR = 1.267,95%CI(1.121,1.432),P < 0.001]、尿素氮[OR = 1.153,95%CI(1.020,1.304),P = 0.023]、总胆固醇[OR = 0.791,95%CI(0.645,0.971),P = 0.025]、hs-CRP峰值[OR = 1.016,95%CI(1.006,1.026),P = 0.002]、cTNI峰值[OR = 1.010,95%CI(1.003,1.017),P = 0.008]。多因素Logistic回归分析结果显示,血糖间隙[OR = 1.537,95%CI(1.140,2.074),P = 0.005]、hs-CRP峰值[OR = 0.659,95%CI(1.004,1.024),P = 0.007]是非糖尿病STEMI患者发生MIRI的独立危险因素。ROC曲线分析结果显示,血糖间隙[曲线下面积= 0.609,95%CI(0.547,0.672),P = 0.001]对非糖尿病STEMI患者发生MIRI具有一定的预测价值。

结论

血糖间隙是非糖尿病STEMI患者发生MIRI的独立危险因素,对其发生MIRI具有预测价值。

Objective

To investigate the predictive value of glycemic gap for myocardial ischemia reperfusion injury (MIRI) in non-diabetic patients with acute ST-segment elevation myocardial infarction (STEMI).

Methods

A total of 541 non-diabetic patients with STEMI admitted to Beijing Anzhen Hospotal, Capital Medical University from January to December 2019 were selected. The age, male, smoking, time of onset, multiple lesions, admission blood glucose (ABG), glycosylated hemoglobin, glycemic gap, blood creatinine, urea nitrogen, triglyceride, total cholesterol, hypersensitive C-reactive protein (hs-CRP) peak and cardiac troponin I (cTNI) peak were included in univariate Logistic regression analysis to screen out relevant influencing factors, and then included in multivariate Logistic regression analysis to obtain independent risk factors affecting MIRI in non-diabetic STEMI patients. The receiver operating characteristic (ROC) curve was used to analyze the predictive value.

Results

Six factors were associated with MIRI in non-diabetic STEMI patients by univariate Logistic regression analysis, including ABG [odds ratio (OR) = 1.149, 95% confidence interval (CI) (1.037, 1.273), P = 0.008], glycemic gap [OR = 1.267, 95%CI (1.121, 1.432), P < 0.001], urea nitrogen [OR = 1.153, 95%CI (1.020, 1.304), P = 0.023], total cholesterol [OR = 0.791, 95%CI (0.645, 0.971), P = 0.025], hs-CRP peak [OR = 1.016, 95%CI (1.006, 1.026), P = 0.002] and cTNI peak [OR = 1.010, 95%CI (1.003, 1.017), P = 0.008]. Multivariate Logistic regression analysis showed that glycemic gap [OR = 1.537, 95%CI (1.140, 2.074), P = 0.005] and hs-CRP peak [OR = 0.659, 95%CI (1.004, 1.024), P = 0.007] were independent risk factors for MIRI in non-diabetic STEMI patients. ROC curve analysis showed that glycemic gap [area under the curve = 0.609, 95%CI (0.547, 0.672), P = 0.001] had certain predictive value for the occurrence of MIRI in non-diabetic STEMI patients.

Conclusion

Glycemic gap is an independent risk factor for MIRI in non-diabetic STEMI patients and has predictive value for MIRI.

表1 非糖尿病STEMI患者发生MIRI的单因素Logistic回归分析
表2 非糖尿病STEMI患者发生MIRI的多因素Logistic回归分析
图1 血糖间隙预测非糖尿病STEMI患者发生MIRI的ROC曲线分析注:STEMI.急性ST段抬高型心肌梗死;MIRI.心肌缺血再灌注损伤;ROC.受试者工作特征
1
Bulluck H, Yellon DM, Hausenloy DJ. Reducing m-yocardial infarct size: challenges and future opportunities[J]. Heart, 2016, 102 (5): 341-348.
2
Vanhorebeek I, Gunst J, Van den Berghe G. Critical care management of stress-induced hyperglycemia[J]. Curr Diabetes Rep, 2018, 18 (4): 17.
3
Harp JB, Yancopoilos GD, Gromada J. Glucagon or-chestrates stress-induced hyperglycaemia[J]. Diabetes Obes Metab, 2016, 18 (7): 648-53.
4
Yang Y, Kim TH, Yoon KH, et al. The stress hy-perglycemia ratio, an index of relative hyperglycemia, as a predictor of clinical outcomes after percutaneous coronary intervention[J]. Int J Cardiol, 2017 (241): 57-63.
5
Gao S, Liu Q, Ding X, et al. Predictive value of the acute-to-chronic glycemic ratio for in-hospital outcomes in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention[J]. Angiology, 2020, 71 (1): 38-47.
6
Esposito K, Nappo F, Marfella R, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress[J]. Circulation, 2002, 106 (16): 2067-2072.
7
Goyal A, Mehta SR, Gerstein HC, et al. Glucose le-vels compared with diabetes history in the risk assessment of patients with acute myocardial infarction[J]. Am Heart J, 2009, 157 (4): 763-770.
8
Capes SE, Hunt D, Malmberg K, et al. Stress hype-rglycemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview[J]. Lancet, 2000, 355 (9206): 733-778.
9
Zhu Y, Liu K, Meng S, et al. Augmented glycaemic gap is a marker for an increased risk of post-infarct left ventricular systolic dysfunction[J]. Cardiovasc Diabetol, 2020, 19 (1): 101.
10
Ibánez B, Heusch G, Ovize M, et al. Evolving t-herapies for myocardial ischemia / reperfusion injury[J]. J Am Coll Cardiol, 2015, 65 (14): 1454-1471.
11
Roberts GW, Quinn SJ, Valentine N, et al. Relative hyperglycemia, a marker of critical illness: introducing the stress hyperglycemia ratio[J]. J Clin Endocrinol Metab, 2015, 100 (12): 4490-4497.
12
DeLong ER, Delong DM, Clarke-Pearson DL. Comp-aring the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach[J]. Biometrics, 1988, 44 (3): 837-845.
13
Boag SE, Andreano E, Spyridopoulos I. Lymphocyte communication in myocardial ischemia / reperfusion injury[J]. Antioxid Redox Signal, 2017, 26 (12): 660-675.
14
Donagaon S, Dharmalingam M. Association between glycemic gap and adverse outcomes in critically ill patients with diabetes[J]. Indian J Endocrinol Metab, 2018, 22 (2): 208-211.
15
Chen PC, Tsai SH, Wang JC, et al. An elevated glycemic gap predicts adverse outcomes in diabetic patients with necrotizing fasciitis[J]. PLoS One, 2019, 14 (10): e223126.
16
Takahashi H, Iwahashi N, Kirigaya J, et al. Glycemic variability determined with a continuous glucose monitoring system can predict prognosis after acute coronary syndrome[J]. Cardiovasc Diabetol, 2018, 17 (1): 116.
17
Lee G, Kim SM, Choi S, et al. The effect of change in fasting glucose on the risk of myocardial infarction, stroke, and all-cause mortality: a nationwide cohort study[J]. Cardiovasc Diabetol, 2018, 17 (1): 51.
18
Ishihara M, Kojima S, Sakamoto T, et al. Comparison of blood glucose values on admission for acute myocardial infarction in patients with versus without diabetes mellitus[J]. Am J Cardiol, 2009, 104 (6): 769-774.
19
Haga S, Remington SJ, Morita N, et al. Hepatic isc-hemia induced immediate oxidative stress after reperfusion and determined the severity of the reperfusioninduced damage[J]. Antioxid Redox Signal, 2009, 11 (10): 2563-2572.
20
Frangogiannis NG. Chemokines in ischemia and repe-rfusion[J]. Thromb Haemost, 2007, 97 (5): 738-747.
21
Ni R, Zheng D, Xiong S, et al. Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type-1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy[J]. Diabetes, 2016, 65 (1): 255-268.
22
Ha H, Yu MR, Choi YJ, et al. Role of high glucose-induced nuclear factor-κB activation in monocyte chemoattractant protein-1 expression by mesangial cells[J]. J Am Soc Nephrol, 2002, 13 (4): 894-902.
23
Cheng X, Siow RC, Mann GE. Impaired redox sig-naling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway[J]. Antioxid Redox Signal, 2011, 14 (3): 469-487.
24
Kim HS, Cho JE, Hwang KC, et al. Diabetes mellitus mitigates cardioprotective effects of remifentanil preconditioning in ischemia-reperfused rat heart in association with anti-apoptotic pathways of survival[J]. Eur J Pharmacol, 2010, 628 (1-3): 132-139.
25
Altunkaynak HO, Ozcelikay AT. Cardioprotective effect of postconditioning against ischemia-reperfusion injury is lost in heart of 8-week diabetic rat[J]. Gen Physiol Biophys, 2015, 35 (1): 63-69.
26
Zhang Y, Yuan D, Yao W, et al. Hyperglycemia ag-gravates hepatic ischemia reperfusion injury by inducing chronic oxidative stress and inflammation[J]. Oxid Med Cell Longev, 2016 (2016): 3919627.
27
白莉,贾永平,忽海洋. 应激性高血糖对大鼠心肌缺血再灌注损伤的影响[J]. 中西医结合心脑血管病杂志201412(8):994-996.
28
Liao WI, Lin CS, Lee CH, et al. An elevated gly-cemic gap is associated with adverse outcomes in diabetic patients with acute myocardial infarction[J]. Sci Rep, 2016 (6): 27770.
29
Marenzi G, Cosentino N, Milazzo V, et al. Prognostic value of the acute-to-chronic glycemic ratio at admission in acute myocardial infarction: a prospective study[J]. Diabetes Care, 2018, 41 (4): 847-853.
[1] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[2] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[3] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[4] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[5] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[6] 黄俊龙, 刘柏隆, 罗瑞翔, 李晓阳, 李文双, 柳政, 陈嘉良, 周祥福. 联合盆底彩超数据和临床资料探讨压力性尿失禁的危险因素[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 323-330.
[7] 林凯, 潘勇, 赵高平, 杨春. 造口还纳术后切口疝的危险因素分析与预防策略[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 634-638.
[8] 杨闯, 马雪. 腹壁疝术后感染的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 693-696.
[9] 周艳, 李盈, 周小兵, 程发辉, 何恒正. 不同类型补片联合Nissen 胃底折叠术修补食管裂孔疝的疗效及复发潜在危险因素[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 528-533.
[10] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[11] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[12] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[13] 李文哲, 王毅, 崔建, 郑启航, 王靖彦, 于湘友. 新疆维吾尔自治区重症患者急性肾功能异常的危险因素分析[J/OL]. 中华卫生应急电子杂志, 2024, 10(05): 269-276.
[14] 刘志超, 胡风云, 温春丽. 山西省脑卒中危险因素与地域的相关性分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 424-433.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文
1
HTML PDF
最新录用 在线预览 正式出版 最新录用 在线预览 正式出版
0 0 0 0 0 1

  来源 其他网站
  次数 1
  比例 100%

摘要
86
最新录用 在线预览 正式出版
0 0 86
  来源 本网站 其他网站
  次数 51 35
  比例 59% 41%