1 |
Bulluck H, Yellon DM, Hausenloy DJ. Reducing m-yocardial infarct size: challenges and future opportunities[J]. Heart, 2016, 102 (5): 341-348.
|
2 |
Vanhorebeek I, Gunst J, Van den Berghe G. Critical care management of stress-induced hyperglycemia[J]. Curr Diabetes Rep, 2018, 18 (4): 17.
|
3 |
Harp JB, Yancopoilos GD, Gromada J. Glucagon or-chestrates stress-induced hyperglycaemia[J]. Diabetes Obes Metab, 2016, 18 (7): 648-53.
|
4 |
Yang Y, Kim TH, Yoon KH, et al. The stress hy-perglycemia ratio, an index of relative hyperglycemia, as a predictor of clinical outcomes after percutaneous coronary intervention[J]. Int J Cardiol, 2017 (241): 57-63.
|
5 |
Gao S, Liu Q, Ding X, et al. Predictive value of the acute-to-chronic glycemic ratio for in-hospital outcomes in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention[J]. Angiology, 2020, 71 (1): 38-47.
|
6 |
Esposito K, Nappo F, Marfella R, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress[J]. Circulation, 2002, 106 (16): 2067-2072.
|
7 |
Goyal A, Mehta SR, Gerstein HC, et al. Glucose le-vels compared with diabetes history in the risk assessment of patients with acute myocardial infarction[J]. Am Heart J, 2009, 157 (4): 763-770.
|
8 |
Capes SE, Hunt D, Malmberg K, et al. Stress hype-rglycemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview[J]. Lancet, 2000, 355 (9206): 733-778.
|
9 |
Zhu Y, Liu K, Meng S, et al. Augmented glycaemic gap is a marker for an increased risk of post-infarct left ventricular systolic dysfunction[J]. Cardiovasc Diabetol, 2020, 19 (1): 101.
|
10 |
Ibánez B, Heusch G, Ovize M, et al. Evolving t-herapies for myocardial ischemia / reperfusion injury[J]. J Am Coll Cardiol, 2015, 65 (14): 1454-1471.
|
11 |
Roberts GW, Quinn SJ, Valentine N, et al. Relative hyperglycemia, a marker of critical illness: introducing the stress hyperglycemia ratio[J]. J Clin Endocrinol Metab, 2015, 100 (12): 4490-4497.
|
12 |
DeLong ER, Delong DM, Clarke-Pearson DL. Comp-aring the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach[J]. Biometrics, 1988, 44 (3): 837-845.
|
13 |
Boag SE, Andreano E, Spyridopoulos I. Lymphocyte communication in myocardial ischemia / reperfusion injury[J]. Antioxid Redox Signal, 2017, 26 (12): 660-675.
|
14 |
Donagaon S, Dharmalingam M. Association between glycemic gap and adverse outcomes in critically ill patients with diabetes[J]. Indian J Endocrinol Metab, 2018, 22 (2): 208-211.
|
15 |
Chen PC, Tsai SH, Wang JC, et al. An elevated glycemic gap predicts adverse outcomes in diabetic patients with necrotizing fasciitis[J]. PLoS One, 2019, 14 (10): e223126.
|
16 |
Takahashi H, Iwahashi N, Kirigaya J, et al. Glycemic variability determined with a continuous glucose monitoring system can predict prognosis after acute coronary syndrome[J]. Cardiovasc Diabetol, 2018, 17 (1): 116.
|
17 |
Lee G, Kim SM, Choi S, et al. The effect of change in fasting glucose on the risk of myocardial infarction, stroke, and all-cause mortality: a nationwide cohort study[J]. Cardiovasc Diabetol, 2018, 17 (1): 51.
|
18 |
Ishihara M, Kojima S, Sakamoto T, et al. Comparison of blood glucose values on admission for acute myocardial infarction in patients with versus without diabetes mellitus[J]. Am J Cardiol, 2009, 104 (6): 769-774.
|
19 |
Haga S, Remington SJ, Morita N, et al. Hepatic isc-hemia induced immediate oxidative stress after reperfusion and determined the severity of the reperfusioninduced damage[J]. Antioxid Redox Signal, 2009, 11 (10): 2563-2572.
|
20 |
Frangogiannis NG. Chemokines in ischemia and repe-rfusion[J]. Thromb Haemost, 2007, 97 (5): 738-747.
|
21 |
Ni R, Zheng D, Xiong S, et al. Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type-1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy[J]. Diabetes, 2016, 65 (1): 255-268.
|
22 |
Ha H, Yu MR, Choi YJ, et al. Role of high glucose-induced nuclear factor-κB activation in monocyte chemoattractant protein-1 expression by mesangial cells[J]. J Am Soc Nephrol, 2002, 13 (4): 894-902.
|
23 |
Cheng X, Siow RC, Mann GE. Impaired redox sig-naling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway[J]. Antioxid Redox Signal, 2011, 14 (3): 469-487.
|
24 |
Kim HS, Cho JE, Hwang KC, et al. Diabetes mellitus mitigates cardioprotective effects of remifentanil preconditioning in ischemia-reperfused rat heart in association with anti-apoptotic pathways of survival[J]. Eur J Pharmacol, 2010, 628 (1-3): 132-139.
|
25 |
Altunkaynak HO, Ozcelikay AT. Cardioprotective effect of postconditioning against ischemia-reperfusion injury is lost in heart of 8-week diabetic rat[J]. Gen Physiol Biophys, 2015, 35 (1): 63-69.
|
26 |
Zhang Y, Yuan D, Yao W, et al. Hyperglycemia ag-gravates hepatic ischemia reperfusion injury by inducing chronic oxidative stress and inflammation[J]. Oxid Med Cell Longev, 2016 (2016): 3919627.
|
27 |
白莉,贾永平,忽海洋. 应激性高血糖对大鼠心肌缺血再灌注损伤的影响[J]. 中西医结合心脑血管病杂志,2014,12(8):994-996.
|
28 |
Liao WI, Lin CS, Lee CH, et al. An elevated gly-cemic gap is associated with adverse outcomes in diabetic patients with acute myocardial infarction[J]. Sci Rep, 2016 (6): 27770.
|
29 |
Marenzi G, Cosentino N, Milazzo V, et al. Prognostic value of the acute-to-chronic glycemic ratio at admission in acute myocardial infarction: a prospective study[J]. Diabetes Care, 2018, 41 (4): 847-853.
|