切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2021, Vol. 14 ›› Issue (05) : 355 -361. doi: 10.3877/cma.j.issn.1674-6880.2021.05.002

论著

连接蛋白43通过蛋白激酶A介导丝氨酸373调控脓毒症急性肺损伤肺泡Ⅱ型上皮细胞屏障功能的研究
赵希伟1, 周佳伟2, 刘凯3, 侯林义3, 张文凯3,()   
  1. 1. 030001 太原,山西医科大学第二医院心胸外科
    2. 430060 武汉,湖北省人民医院肝胆外科
    3. 030001 太原,山西医科大学第二医院重症医学科
  • 收稿日期:2020-12-03 出版日期:2021-10-31
  • 通信作者: 张文凯
  • 基金资助:
    山西省太原市科技项目(12016905)

Connexin 43 regulates the barrier function of alveolar type Ⅱ epithelial cells in sepsis-induced acute lung injury through serine 373 mediated by protein kinase A

Xiwei Zhao1, Jiawei Zhou2, Kai Liu3, Linyi Hou3, Wenkai Zhang3,()   

  1. 1. Department of Cardiothoracic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
    2. Department of Hepatobiliary Surgery, Hubei General Hospital, Wuhan 430060, China
    3. Department of Critical Care Medicine, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2020-12-03 Published:2021-10-31
  • Corresponding author: Wenkai Zhang
引用本文:

赵希伟, 周佳伟, 刘凯, 侯林义, 张文凯. 连接蛋白43通过蛋白激酶A介导丝氨酸373调控脓毒症急性肺损伤肺泡Ⅱ型上皮细胞屏障功能的研究[J]. 中华危重症医学杂志(电子版), 2021, 14(05): 355-361.

Xiwei Zhao, Jiawei Zhou, Kai Liu, Linyi Hou, Wenkai Zhang. Connexin 43 regulates the barrier function of alveolar type Ⅱ epithelial cells in sepsis-induced acute lung injury through serine 373 mediated by protein kinase A[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2021, 14(05): 355-361.

目的

观察脓毒症急性肺损伤肺泡Ⅱ型上皮细胞中连接蛋白43(Cx43)表达水平与肺泡气血屏障通透性的关系,并探讨Cx43及蛋白激酶A(PKA)信号通路在脓毒症急性肺损伤中的作用。

方法

将A549细胞分为对照组、脓毒症组[脂多糖(LPS)组]、LPS + PKA抑制剂组(LPS + H89组)和8-Bromo-cAMP组(PKA激活剂组)。LPS组和LPS + H89组加入LPS 1 μg/mL,PKA激活剂组加入8-Bromo-cAMP 10 μmol/L,均处理24 h;其中,LPS + H89组予H89 10 μmol/L预处理1 h后弃去。采用Western-blotting法检测各组细胞磷酸化Cx43(p-Cx43)、PKA及磷酸化PKA(p-PKA)的蛋白表达水平,并用Transwell板进行单层细胞培养,用酶标仪测定A549单层细胞的通透性。

结果

4组细胞p-Cx43、PKA和p-PKA蛋白表达水平及细胞通透性比较,差异均有统计学意义(F = 8.961、249.729、7 526.430、3 661.755,P均< 0.05)。进一步两两比较发现,LPS组和PKA激活剂组p-Cx43和PKA蛋白表达水平及细胞通透性均较对照组显著升高,LPS组、LPS + H89组和PKA激活剂组p-PKA蛋白表达水平均较对照组显著升高;LPS + H89组p-Cx43和PKA蛋白表达水平及细胞通透性均较LPS组降低,p-PKA则较LPS组有所升高;PKA激活剂组较LPS组和LPS + H89组细胞通透性均显著增大(P均< 0.05)。

结论

Cx43通过PKA介导丝氨酸373调控在脓毒症引起的急性肺损伤中起着关键作用,其可增加肺泡Ⅱ型上皮细胞的通透性,破坏肺泡屏障功能及增加缝隙连接细胞间通讯。

Objective

To observe the relationship between connexin 43 (Cx43) of alveolar type Ⅱ epithelial cells and the permeability of alveolar air blood barrier in sepsis-induced acute lung injury, and to explore the role of Cx43 and protein kinase A (PKA) signaling pathway in sepsis-induced acute lung injury.

Methods

A549 cells were divided into a control group, a sepsis group [lipopolysaccharide (LPS) group], a LPS + PKA inhibitor group (LPS + H89 group) and a 8-Bromo-cAMP group (PKA activator group). Both the LPS group and LPS + H89 group were treated with LPS 1 μg/mL, while the PKA activator group was treated with 8-Bromo-cAMP 10 μmol/L, all for 24 h. In addition, the LPS + H89 group was pretreated with H89 10 μmol/L for 1 h. The protein expression levels of phosphorylated Cx43 (p-Cx43), PKA and phosphorylated PKA (p-PKA) in each group were determined by the Western-blotting assay. Monolayer cell cultures were performed with Transwell plates, and the permeability of A549 monolayers was determined by a microplate reader.

Results

The p-Cx43, PKA and p-PKA protein expression levels and the cell permeability were significantly different among the four groups (F = 8.961, 249.729, 7 526.430, 3 661.755; all P < 0.05). Further pairwise comparisons revealed that compared with the control group, the p-Cx43 and PKA protein expression levels and the cell permeability significantly increased in the LPS and PKA activator groups, and the p-PKA protein expression levels significantly increased in the LPS, LPS + H89 and PKA activator groups (all P < 0.05). The p-Cx43 and PKA protein expression levels and the cell permeability reduced, while the p-PKA protein expression levels increased in the LPS + H89 group compared with the LPS group (all P < 0.05). The cell permeability in the PKA activator group significantly increased compared with the LPS and LPS + H89 groups (both P < 0.05).

Conclusion

Cx43 plays a key role in sepsis-induced acute lung injury through regulating serine 373 mediated by PKA, which can increase permeability of alveolar type Ⅱ epithelial cells, disrupt alveolar barrier function and increase gap junction intercellular communication.

图1 4组A549细胞p-Cx43蛋白表达水平的比较(n = 3)
图2 4组A549细胞PKA蛋白表达水平的比较(n = 3)
图3 4组A549细胞p-PKA蛋白表达水平的比较(n = 3)
图4 4组A549细胞通透性的比较(n = 3)
1
Fernando SM, Rochwerg B, Seely AJE. Clinical implications of the third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. CMAJ, 2018, 190 (36): E1058-E1059.
2
Rahmel T, Schmitz S, Nowak H, et al. Long-term mortality and outcome in hospital survivors of septic shock, sepsis, and severe infections: the importance of aftercare[J]. PLoS One, 2020, 15 (2): e0228952.
3
Contrin LM, Paschoal VD, Beccaria LM, et al. Quality of life of severe sepsis survivors after hospital discharge[J]. Rev Lat Am Enfermagem, 2013, 21 (3): 795-802.
4
Cuthbertson BH, Elders A, Hall S, et al. Mortality and quality of life in the five years after severe sepsis[J]. Crit Care, 2013, 17 (2): R70.
5
Matthay MA, Zemans RL, Zimmerman GA et al. Acute respiratory distress syndrome[J]. Nat Rev Dis Primers, 2019, 5 (1): 18.
6
Zhou J, Fu Y, Liu K, et al. miR-206 regulates alveolar type Ⅱ epithelial cell Cx43 expression in sepsis-induced acute lung injury[J]. Exp Ther Med, 2019, 18 (1): 296-304.
7
Han F, Wu G, Han S, et al. Hypoxia-inducible factor prolyl-hydroxylase inhibitor roxadustat (FG-4592) alleviates sepsis-induced acute lung injury[J]. Respir Physiol Neurobiol, 2020 (281): 103506.
8
Brune K, Frank J, Schwingshackl A, et al. Pulmonary epithelial barrier function: some new players and mechanism[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 308 (8): L731-L745.
9
Pohl C, Hermanns M, Uboldi C, et al. Barrier functions and paracellular integrity in human cell culture models of the proximal respiratory unit[J]. Eur J Pharm Biopharm, 2009, 72 (2): 339-349.
10
Liu T, Li Y, Zhang B, et al. The role of phosphorylated Cx43 on PKC mediated ser368 in lung injury induced by seawater inhalation[J]. Inflammation, 2015, 38 (5): 1847-1854.
11
Lieber M, Smith B, Szakal A, et al. A continuous tumor-cell line from a human lung carcinoma with properties of type Ⅱ alveolar epithelial cells[J]. Int J Cancer, 1976, 17 (1): 62-70.
12
Shi YY, Liu TJ, Fu JH, et al. Vitamin D/VDR signaling attenuates lipopolysaccharide-induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier[J]. Mol Med Rep, 2016, 13 (2): 1186-1194.
13
Xu Z, Zhang C, Cheng L, et al. The microRNA miR-17 regulates lung FoxA1 expression during lipopolysaccharide-induced acute lung injury[J]. Biochem Biophys Res Commun, 2014, 445 (1): 48-53.
14
Sartori C, Matthay MA. Alveolar epithelial fluid transport in acute lung injury: new insights[J]. Eur Respir J, 2002, 20 (5): 1299-1313.
15
Maina JN, West JB. Thin and strong! The bioengineering dilemma in the structural and functional design of the blood-gas barrier[J]. Physiol Rev, 2005, 85 (3): 811-844.
16
Yang J, Wang Y, Liu H, et al. C2-ceramide influences alveolar epithelial barrier function by downregulating Zo-1, occludin and claudin-4 expression[J]. Toxicol Mech Methods, 2017, 27 (4): 293-297.
17
Wiener-Kronish JP, Albertine KH, Matthay MA. Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin[J]. J Clin Invest, 1991, 88 (3): 864-875.
18
Ware LB, Matthay MA. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2001, 163 (6): 1376-1383.
19
Dukic AR, Haugen LH, Pidoux G, et al. A protein kinase A-ezrin complex regulates connexin 43 gap junction communication in liver epithelial cells[J]. Cell Signal, 2017 (32): 1-11.
20
Bonacquisti EE, Nguyen J. Connexin 43 (Cx43) in cancer: implications for therapeutic approaches via gap junctions[J]. Cancer Lett, 2019 (442): 439-444.
21
Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication[J]. Annu Rev Biochem, 1996 (65): 475-502.
22
Sosinsky GE. Molecular organization of gap junction membrane channels[J]. J Bioenerg Biomembr, 1996, 28 (4): 297-309.
23
Zhang Q, Bai X, Liu Y, et al. Current concepts and perspectives on connexin43: a mini review[J]. Curr Protein Pept Sci, 2018, 19 (11): 1049-1057.
24
Martins-Marques T, Ribeiro-Rodrigues T, Batista-Almeida D, et al. Biological functions of connexin43 beyond intercellular communication[J]. Trends Cell Biol, 2019, 29 (10): 835-847.
25
Giepmans BNG. Role of connexin43-interacting proteins at gap junctions[J]. Adv Cardiol, 2006 (42): 41-56.
26
Pidoux G, Taskén K. Anchored PKA as a gatekeeper for gap junctions[J]. Commun Integr Biol, 2015, 8 (4): e1057361.
27
Lampe PD, Lau AF. The effects of connexin phosphorylation on gap junctional communication[J]. Int J Biochem Cell Biol, 2004, 36 (7): 1171-1186.
28
Dukic AR, Gerbaud P, Guibourdenche J, et al. Ezrinanchored PKA phosphorylates serine 369 and 373 on connexin 43 to enhance gap junction assembly, communication, and cell fusion[J]. Biochem J, 2018, 475 (2): 455-476.
29
Skalhegg BS, Tasken K. Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA[J]. Front Biosci, 2000 (5): D678-D693.
30
Taskén K, Skalhegg BS, Taskén KA, et al. Structure, function, and regulation of human cAMP-dependent protein kinases[J]. Adv Second Messenger Phosphoprotein Res, 1997 (31): 191-204.
31
Lester LB, Scott JD. Anchoring and scaffold proteins for kinases and phosphatases[J]. Recent Prog Horm Res, 1997 (52): 409-430.
32
Pidoux G, Taskén K. Specificity and spatial dynamics of protein kinase A signaling organized by A-kinaseanchoring proteins[J]. J Mol Endocrinol, 2010, 44 (5): 271-284.
33
Taskén K, Aandahl EM. Localized effects of cAMP mediated by distinct routes of protein kinase A[J]. Physiol Rev, 2004, 84 (1): 137-167.
34
Pidoux G, Taskén K. Anchored PKA as a gatekeeper for gap junctions[J]. Commun Integr Biol, 2015, 8 (4): e1057361.
35
孙雪东,严一核,褚韦韦,等.高迁移率族蛋白B1/Toll样受体4信号通路在脓毒症大鼠致急性肺损伤中的作用研究[J/CD].中华危重症医学杂志(电子版)202013(6):419-426.
[1] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[2] 陈宇, 冯芳, 张露, 刘健. 基于生物信息学分析筛选脓毒症心肌病关键致病基因[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 286-291.
[3] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[4] 作者. 脓毒症与脓毒性休克[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 0-.
[5] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[6] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[7] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[8] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[9] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[10] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[11] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[12] 高超, 巢杰, 邱海波. T-bet:脓毒症免疫失衡中Th17细胞的新型调节分子[J]. 中华重症医学电子杂志, 2023, 09(03): 280-285.
[13] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 宏基因组二代测序在脓毒症病原体诊断中的应用进展[J]. 中华重症医学电子杂志, 2023, 09(03): 292-297.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要