1 |
Fernando SM, Rochwerg B, Seely AJE. Clinical implications of the third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. CMAJ, 2018, 190 (36): E1058-E1059.
|
2 |
Rahmel T, Schmitz S, Nowak H, et al. Long-term mortality and outcome in hospital survivors of septic shock, sepsis, and severe infections: the importance of aftercare[J]. PLoS One, 2020, 15 (2): e0228952.
|
3 |
Contrin LM, Paschoal VD, Beccaria LM, et al. Quality of life of severe sepsis survivors after hospital discharge[J]. Rev Lat Am Enfermagem, 2013, 21 (3): 795-802.
|
4 |
Cuthbertson BH, Elders A, Hall S, et al. Mortality and quality of life in the five years after severe sepsis[J]. Crit Care, 2013, 17 (2): R70.
|
5 |
Matthay MA, Zemans RL, Zimmerman GA et al. Acute respiratory distress syndrome[J]. Nat Rev Dis Primers, 2019, 5 (1): 18.
|
6 |
Zhou J, Fu Y, Liu K, et al. miR-206 regulates alveolar type Ⅱ epithelial cell Cx43 expression in sepsis-induced acute lung injury[J]. Exp Ther Med, 2019, 18 (1): 296-304.
|
7 |
Han F, Wu G, Han S, et al. Hypoxia-inducible factor prolyl-hydroxylase inhibitor roxadustat (FG-4592) alleviates sepsis-induced acute lung injury[J]. Respir Physiol Neurobiol, 2020 (281): 103506.
|
8 |
Brune K, Frank J, Schwingshackl A, et al. Pulmonary epithelial barrier function: some new players and mechanism[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 308 (8): L731-L745.
|
9 |
Pohl C, Hermanns M, Uboldi C, et al. Barrier functions and paracellular integrity in human cell culture models of the proximal respiratory unit[J]. Eur J Pharm Biopharm, 2009, 72 (2): 339-349.
|
10 |
Liu T, Li Y, Zhang B, et al. The role of phosphorylated Cx43 on PKC mediated ser368 in lung injury induced by seawater inhalation[J]. Inflammation, 2015, 38 (5): 1847-1854.
|
11 |
Lieber M, Smith B, Szakal A, et al. A continuous tumor-cell line from a human lung carcinoma with properties of type Ⅱ alveolar epithelial cells[J]. Int J Cancer, 1976, 17 (1): 62-70.
|
12 |
Shi YY, Liu TJ, Fu JH, et al. Vitamin D/VDR signaling attenuates lipopolysaccharide-induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier[J]. Mol Med Rep, 2016, 13 (2): 1186-1194.
|
13 |
Xu Z, Zhang C, Cheng L, et al. The microRNA miR-17 regulates lung FoxA1 expression during lipopolysaccharide-induced acute lung injury[J]. Biochem Biophys Res Commun, 2014, 445 (1): 48-53.
|
14 |
Sartori C, Matthay MA. Alveolar epithelial fluid transport in acute lung injury: new insights[J]. Eur Respir J, 2002, 20 (5): 1299-1313.
|
15 |
Maina JN, West JB. Thin and strong! The bioengineering dilemma in the structural and functional design of the blood-gas barrier[J]. Physiol Rev, 2005, 85 (3): 811-844.
|
16 |
Yang J, Wang Y, Liu H, et al. C2-ceramide influences alveolar epithelial barrier function by downregulating Zo-1, occludin and claudin-4 expression[J]. Toxicol Mech Methods, 2017, 27 (4): 293-297.
|
17 |
Wiener-Kronish JP, Albertine KH, Matthay MA. Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin[J]. J Clin Invest, 1991, 88 (3): 864-875.
|
18 |
Ware LB, Matthay MA. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2001, 163 (6): 1376-1383.
|
19 |
Dukic AR, Haugen LH, Pidoux G, et al. A protein kinase A-ezrin complex regulates connexin 43 gap junction communication in liver epithelial cells[J]. Cell Signal, 2017 (32): 1-11.
|
20 |
Bonacquisti EE, Nguyen J. Connexin 43 (Cx43) in cancer: implications for therapeutic approaches via gap junctions[J]. Cancer Lett, 2019 (442): 439-444.
|
21 |
Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication[J]. Annu Rev Biochem, 1996 (65): 475-502.
|
22 |
Sosinsky GE. Molecular organization of gap junction membrane channels[J]. J Bioenerg Biomembr, 1996, 28 (4): 297-309.
|
23 |
Zhang Q, Bai X, Liu Y, et al. Current concepts and perspectives on connexin43: a mini review[J]. Curr Protein Pept Sci, 2018, 19 (11): 1049-1057.
|
24 |
Martins-Marques T, Ribeiro-Rodrigues T, Batista-Almeida D, et al. Biological functions of connexin43 beyond intercellular communication[J]. Trends Cell Biol, 2019, 29 (10): 835-847.
|
25 |
Giepmans BNG. Role of connexin43-interacting proteins at gap junctions[J]. Adv Cardiol, 2006 (42): 41-56.
|
26 |
Pidoux G, Taskén K. Anchored PKA as a gatekeeper for gap junctions[J]. Commun Integr Biol, 2015, 8 (4): e1057361.
|
27 |
Lampe PD, Lau AF. The effects of connexin phosphorylation on gap junctional communication[J]. Int J Biochem Cell Biol, 2004, 36 (7): 1171-1186.
|
28 |
Dukic AR, Gerbaud P, Guibourdenche J, et al. Ezrinanchored PKA phosphorylates serine 369 and 373 on connexin 43 to enhance gap junction assembly, communication, and cell fusion[J]. Biochem J, 2018, 475 (2): 455-476.
|
29 |
Skalhegg BS, Tasken K. Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA[J]. Front Biosci, 2000 (5): D678-D693.
|
30 |
Taskén K, Skalhegg BS, Taskén KA, et al. Structure, function, and regulation of human cAMP-dependent protein kinases[J]. Adv Second Messenger Phosphoprotein Res, 1997 (31): 191-204.
|
31 |
Lester LB, Scott JD. Anchoring and scaffold proteins for kinases and phosphatases[J]. Recent Prog Horm Res, 1997 (52): 409-430.
|
32 |
Pidoux G, Taskén K. Specificity and spatial dynamics of protein kinase A signaling organized by A-kinaseanchoring proteins[J]. J Mol Endocrinol, 2010, 44 (5): 271-284.
|
33 |
Taskén K, Aandahl EM. Localized effects of cAMP mediated by distinct routes of protein kinase A[J]. Physiol Rev, 2004, 84 (1): 137-167.
|
34 |
Pidoux G, Taskén K. Anchored PKA as a gatekeeper for gap junctions[J]. Commun Integr Biol, 2015, 8 (4): e1057361.
|
35 |
孙雪东,严一核,褚韦韦,等.高迁移率族蛋白B1/Toll样受体4信号通路在脓毒症大鼠致急性肺损伤中的作用研究[J/CD].中华危重症医学杂志(电子版),2020,13(6):419-426.
|