切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2018, Vol. 11 ›› Issue (04) : 238 -243. doi: 10.3877/cma.j.issn.1674-6880.2018.04.005

所属专题: 文献

论著

驱动压对肺内源性急性呼吸窘迫综合征的影响
杨茂宪1, 赵文静2, 王丽燕3, 孔敏4, 许鹏程2, 徐龙生5, 沈辉5, 邓厚盛6, 和秋莉7, 施云超1,()   
  1. 1. 314001 浙江嘉兴,浙江省嘉兴市第一医院ICU
    2. 221002 江苏徐州,徐州医科大学附属医院ICU
    3. 314001 浙江嘉兴,嘉兴市第一医院全科病房
    4. 314001 浙江嘉兴,嘉兴市第一医院麻醉科
    5. 314001 浙江嘉兴,嘉兴市第一医院中心实验室
    6. 325000 浙江温州,温州医科大学附属第二医院麻醉科
    7. 233030 安徽蚌埠,蚌埠医学院研究生院
  • 收稿日期:2018-01-04 出版日期:2018-08-01
  • 通信作者: 施云超
  • 基金资助:
    嘉兴市医学重点学科(支撑学科)资助项目(04-Z-08); 嘉兴市第一医院(壹计划)资助项目(2017-YA-50)

Effect of driving pressure on pulmonary endogenous acute respiratory distress syndrome

Maoxian Yang1, Wenjing Zhao2, Liyan Wang3, Min Kong4, Pengcheng Xu2, Longsheng Xu5, Hui Shen5, Housheng Deng6, Qiuli He7, Yunchao Shi1,()   

  1. 1. Department of Intensive Care Unit, the First Hospital of Jiaxing, Jiaxing 314001, China
    2. Department of Intensive Care Unit, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
    3. Department of General Practice, the First Hospital of Jiaxing, Jiaxing 314001, China
    4. Department of Anesthesiology, the First Hospital of Jiaxing, Jiaxing 314001, China
    5. Central Laboratory, the First Hospital of Jiaxing, Jiaxing 314001, China
    6. Department of Anesthesiology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
    7. Graduate School of Bengbu Medical University, Bengbu 233030, China
  • Received:2018-01-04 Published:2018-08-01
  • Corresponding author: Yunchao Shi
  • About author:
    Corresponding author: Shi Yunchao, Email:
引用本文:

杨茂宪, 赵文静, 王丽燕, 孔敏, 许鹏程, 徐龙生, 沈辉, 邓厚盛, 和秋莉, 施云超. 驱动压对肺内源性急性呼吸窘迫综合征的影响[J/OL]. 中华危重症医学杂志(电子版), 2018, 11(04): 238-243.

Maoxian Yang, Wenjing Zhao, Liyan Wang, Min Kong, Pengcheng Xu, Longsheng Xu, Hui Shen, Housheng Deng, Qiuli He, Yunchao Shi. Effect of driving pressure on pulmonary endogenous acute respiratory distress syndrome[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2018, 11(04): 238-243.

目的

探讨不同驱动压力对脂多糖诱导的肺内源性急性呼吸窘迫综合征(ARDS)的治疗作用及其机制。

方法

40只雄性Sprague-Dawley大鼠分为对照组、急性呼吸窘迫综合征模型组(ARDS组)、机械通气低驱动压组(L组)、机械通气一般驱动压组(M组)、机械通气高驱动压组(H组),每组各8只。气管内滴注脂多糖6 mg/kg复制ARDS动物模型,模型复制成功后对L组、M组及H组实施相应的机械通气策略4 h。比较5组大鼠动脉血氧分压(PaO2)、二氧化碳分压(PaCO2)、肺组织湿/干重比、肺泡灌洗液(BALF)中总蛋白、Ⅲ型前胶原(PCⅢ)、血清中白细胞介素6(IL-6)的表达水平以及肺组织病理形态学变化情况。

结果

5组大鼠PaO2、PaCO2、肺组织湿/干重比、BALF中蛋白含量、血清IL-6、PCⅢ表达水平、塌陷肺泡所占比例以及膨胀肺泡所占比例比较,差异均有统计学意义(F= 25.054、5.316、14.306、84.940、93.379、41.983、49.343、123.433,P均< 0.05)。进一步两两比较发现,L组和H组PaO2、肺组织湿/干重比、BALF中蛋白含量、血清IL-6以及塌陷肺泡所占比例与ARDS组比较,差异均有统计学意义(P均< 0.05),H组PaCO2表达水平和膨胀肺泡所占比例与ARDS组比较,差异均有统计学意义(P均< 0.05),L组PCIⅢ表达水平较ARDS组显著降低(P < 0.05);H组PaO2、血清IL-6、PCⅢ表达水平、塌陷肺泡所占比例以及膨胀肺泡所占比例与ARDS组比较,差异均有统计学意义(P均< 0.05)。

结论

在小潮气量通气下,较低的驱动压力能够改善脂多糖诱导的肺内源性ARDS大鼠的气体交换,减轻肺水肿,降低炎症反应;当驱动压过高时可能引起肺过度膨胀,甚至诱发肺损伤的发生。

Objective

To investigate the effect of different driving pressure on pulmonary endogenous acute respiratory distress syndrome (ARDS) induced by lipopolysaccharide and its mechanism.

Methods

Forty male Sprague-Dawley rats were divided into the control group, ARDS group, mechanical ventilation low driving pressure group (L group), mechanical ventilation medium driving pressure group (M group), and mechanical ventilation high driving pressure group (H group), 8 rats in each group. The ARDS model was established by intratracheal instillation of lipopolysaccharide (6 mg/kg). Then the corresponding mechanical ventilation strategies were applied to L, M and H groups for 4 h. The expressions of arterial partial pressure of oxygen (PaO2), partial pressure of carbon dioxide (PaCO2), wet/dry weight ratio of lung tissue (W/D), total protein in bronchoalveolar lavage fluid (BALF), type Ⅲ procollagen (PCⅢ) and interleukin 6 (IL-6) in serum, and the pathological and morphological changes of lung tissue were compared in these five groups.

Results

There were significant differences in the expressions of PaO2, PaCO2, wet/dry weight ratio of lung tissu, protein content in BALF, IL-6 in serum and PCⅢ, and the proportion of collapsed alveoli and inflated alveoli in these five groups (F= 25.054, 5.316, 14.306, 84.940, 93.379, 41.983, 49.343, 123.433; all P < 0.05). Further comparison showed that the expressions of PaO2, W/D of lung tissue, protein content in BALF and IL-6 in serum, and the proportion of collapsed alveoli in L and H groups were significantly different compared with ARDS group (all P < 0.05). The expression of PaCO2 and the proportion of inflated alveoli in H and ARDS groups were significantly different (both P < 0.05). The PCⅢ expression was significantly lower in the L group than in ARDS group (P < 0.05). The expressions of PaO2, IL-6 in serum and PCⅢ, and the proportion of collapsed alveoli and inflated alveoli in H and ARDS groups were significantly different (all P < 0.05).

Conclusions

Under low tidal volume ventilation, lower driving pressure can improve gas exchange and reduce pulmonary edema and inflammatory response in lipopolysaccharide induced lung endogenous ARDS rats. High driving pressure may cause excessive lung expansion and lead to lung injury.

表1 不同驱动压力对5组大鼠PaO2、PaCO2及肺组织湿/干重的影响(±s
表2 不同驱动压力对5组大鼠BALF中总蛋白、PCⅢ以及血清IL-6表达水平的影响(±s
表3 不同驱动压力对5组大鼠肺组织病理形态学的影响(±s
1
Kollef MH,Schuster DP. The acute respiratory distress syndrome[J]. N Engl J Med, 1995, 332(1): 27-37.
2
Tuleja E,Królikowski W,Twardowska M. Acute respi-ratory distress syndrome (ARDS)[J]. Polskie Pol Arch Med Wewn, 2000, 103(5-6): 319-327.
3
Ranieri VM,Suter PM,Tortorella C, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial[J]. JAMA, 1999, 282(1): 54-61.
4
Amato MB,Barbas CS,Medeiros DM, et al. Effects of a protective-ventilation strategy on mrtality in the acute respiratory distress syndrome[J]. N Engl J Med, 1998, 338(6): 347-354.
5
Amato MB,Meade MO,Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome[J]. N Engl J Med, 2015, 372(8): 747-755.
6
Briel M,Meade M,Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis[J]. JAMA, 2010, 303(9): 865-873.
7
Beitler JR,Shaefi S,Montesi SB, et al. Prone positioning reduces mortality from acute respiratory distress syndrome in the low tidal volume era: a meta-analysis[J]. Intensive Care Med, 2014, 40(3): 332-341.
8
Biehl M,Kashiouris MG,Gajic O. Ventilator-induced lung injury: minimizing its impact in patients with or at risk for ARDS[J]. Respiratory Care, 2013, 58(6): 927-937.
9
Samary CS,Santos RS,Santos CL, et al. Biological impact of transpulmonary driving pressure in experimental acute respiratory distress syndrome[J]. Anesthesiology, 2015, 123(2): 423-433.
10
杨茂宪,赵文静. 不同途径给予内毒素致大鼠急性肺损伤的比较[J]. 中国急救医学, 2012, 32(12):1102-1105.
11
Steimback PW,Oliveira GP,Rzezinski AF, et al. Effects of frequency and inspiratory plateau pressure during recruitment manoeuvres on lung and distal organs in acute lung injury[J]. Intensive Care Med, 2009, 35(6): 1120-1128.
12
Gattinoni L,Pelosi P,Suter PM, et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes?[J]. Am J Respir Crit Care Med, 2012, 158(1): 3-11.
13
周锋,张颖. 瑞芬太尼对脓毒症诱导急性呼吸窘迫综合征大鼠的保护作用研究[J/CD]. 中华危重症医学杂志(电子版), 2016, 9(3):145-148.
14
张慧慧,蔡国龙,胡才宝, 等. 乌司他丁对脓毒症大鼠急性肺损伤的保护作用及其机制研究[J/CD]. 中华危重症医学杂志(电子版), 2017, 10(3):153-158.
15
Suki B,Hubmayr R. Epithelial and endothelial damage induced by mechanical ventilation modes[J]. Curr Opin Crit Care, 2014, 20(1): 17-24.
16
Cortes-Puentes GA,Keenan JC,Adams AB, et al. Impact of chest wall modifications and lung injury on the correspondence between airway and transpulmonary driving pressures[J]. Crit Care Med, 2015, 43(8): e287-e295.
17
唐坎凯,温晓红,董朝晖, 等. 急性呼吸窘迫综合征患者血管外肺水指数动态变化与预后的关系[J/CD]. 中华危重症医学杂志(电子版), 2012, 5(5):309-314.
18
Tsuchida S,Engelberts D,Peltekova V, et al. Atele-ctasis causes alveolar injury in nonatelectatic lung regions[J]. Am J Respir Crit Care Med, 2006, 174(3): 279-289.
19
Terragni PP,Filippini C,Slutsky AS, et al. Accuracy of plateau pressure and stress index to identify injurious ventilation in patients with acute respiratory distress syndrome[J]. Anesthesiology, 2013, 119(4): 880-889.
20
何丹鸯,刘洁泉,吴春蕾, 等. 脓毒症并发急性呼吸窘迫综合征在急诊ICU的急救和护理[J/CD]. 中华危重症医学杂志(电子版), 2015, 8(3):203-205.
21
Aoyama H,Pettenuzzo T,Aoyama K, et al. Association of driving pressure with mortality among ventilated patients with acute respiratory distress syndrome: a systematic review and meta-analysis[J]. Crit Care Med, 2018, 46(2): 300-306.
22
Schmidt MFS,Amaral ACKB,Fan E, et al. Driving pressure and hospital mortality in patients without ARDS: a cohort study[J]. Chest, 2018, 153(1): 46-54.
23
Chiu LC,Hu HC,Hung CY, et al. Dynamic driving pressure associated mortality in acute respiratory distress syndrome with extracorporeal membrane oxygenation[J]. Ann Intensive Care, 2017, 7(1): 12.
24
Silva PL,Moraes L,Santos RS, et al. Recruitment maneuvers modulate epithelial and endothelial cell response according to acute lung injury etiology[J]. Crit Care Med, 2013, 41(10): e256-e265.
25
Chiumello D,Carlesso E,Brioni M, et al. Airway driving pressure and lung stress in ARDS patients[J]. Critical Care, 2016 (20): 276.
26
Neto AS,Hemmes SN,Barbas CS, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data[J]. Lancet Respir Med, 2016, 4(4): 272-280.
27
Fanelli V,Ranieri MV,Mancebo J, et al. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress syndrome[J]. Crit Care, 2016 (20): 36.
28
González-López A,García-Prieto E,Batalla-Solís E, et al. Lung strain and biological response in mechanically ventilated patients[J]. Intensive Care Med, 2012, 38(2): 240-247.
29
Guérin C,Papazian L,Reignier J, et al. Effect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials[J]. Crit Care, 2016, 20(1): 384.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[3] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[4] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[5] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[6] 李玉娟, 艾芳, 熊欢庆, 陈键, 刘刚, 李志超, 金发光. "丹蛇"组方对小鼠急性肺损伤的治疗作用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 171-177.
[7] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[8] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[9] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[10] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[11] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[12] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[13] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
[14] 王永广, 朱鹏, 许千金, 甘桂芬, 石钟山, 潘纯. 急性呼吸窘迫综合征诊断标准亟需更新[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 113-117.
[15] 史楠, 袁雪燕, 邱海波. 肺复张在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 118-126.
阅读次数
全文


摘要