切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2024, Vol. 17 ›› Issue (03) : 196 -203. doi: 10.3877/cma.j.issn.1674-6880.2024.03.004

论著

吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究
杨茂宪1, 沈鹏1,(), 王倩倩1, 吴旺2, 沈永帅2, 蒋禛2, 徐龙生3, 朱建刚1, 刘倍倍3   
  1. 1. 314001 浙江嘉兴,嘉兴学院附属医院 嘉兴市第一医院重症医学科
    2. 314001 浙江嘉兴,浙江中医药大学嘉兴学院联培基地
    3. 314001 浙江嘉兴,嘉兴学院附属医院 嘉兴市第一医院中心实验室
  • 收稿日期:2023-08-20 出版日期:2024-06-30
  • 通信作者: 沈鹏
  • 基金资助:
    浙江省公益技术研究项目(LGD20C090001); 嘉兴市第一医院/嘉兴学院附属医院联合科研基金(2021LHJJ003); 2020年高校直属附属医院抗疫专项项目(Y202043750); 嘉兴市医学重点学科重症医学(支撑学科)(2023-ZC-003)

Therapeutic effect of magnesium picolinate and dexamethasone on acute respiratory distress syndrome rats

Maoxian Yang1, Peng Shen1,(), Qianqian Wang1, Wang Wu2, Yongshuai Shen2, Zhen Jiang2, Longsheng Xu3, Jiangang Zhu1, Beibei Liu3   

  1. 1. Department of Intensive Care Unit, the First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing 314001, China
    2. Joint Training Base of Zhejiang Chinese Medical University and Jiaxing University, Jiaxing 314001, China
    3. Key Laboratory, the First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing 314001, China
  • Received:2023-08-20 Published:2024-06-30
  • Corresponding author: Peng Shen
引用本文:

杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.

Maoxian Yang, Peng Shen, Qianqian Wang, Wang Wu, Yongshuai Shen, Zhen Jiang, Longsheng Xu, Jiangang Zhu, Beibei Liu. Therapeutic effect of magnesium picolinate and dexamethasone on acute respiratory distress syndrome rats[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2024, 17(03): 196-203.

目的

探讨吡啶甲酸镁(MgPic)对接受地塞米松(Dex)治疗的急性呼吸窘迫综合征(ARDS)大鼠肺脏和膈肌的影响。

方法

将20只健康成年雄性Sprague-Dawley大鼠按照随机数字表法分为对照组、ARDS组、Dex组及MgPic组,每组各5只。对照组大鼠给予气管内雾化等渗NaCl溶液2 mL/kg,其他三组大鼠给予气管内雾化脂多糖4 mg/kg诱发ARDS。建模成功后,Dex组和MgPic组大鼠连续7 d腹腔注射Dex(1 mg·kg-1·d-1)。对照组、ARDS组和Dex组饲喂标准饮食,而MgPic组则饲喂添加了MgPic(500 mg/kg)的标准饮食。连续饲养7 d并禁食12 h后,测量大鼠体质量及测定血清镁离子(Mg2+)浓度,并进行肺功能评估,包括吸气峰流速(PIF)、呼气峰流速(PEF)、潮气量(Vt)、分钟通气量(Mv)以及呼气中期流速(EF50)。计算肺组织湿干重(W/D)比值及测量膈肌重量。检测支气管肺泡灌洗液(BALF)中肿瘤坏死因子α(TNF-α)及Ⅲ型前胶原蛋白(PCⅢ)的浓度。采用western-blotting检测肺组织转化生长因子β1(TGF-β1)、膈肌组织抗肌球蛋白重链2(MYH2)蛋白表达水平。采用实时定量PCR(qRT-PCR)检测肺组织TGF-β1信使RNA(mRNA)的表达以及膈肌组织中肌肉环指蛋白1(MURF-1)和叉头转录因子O1(FoxO1)mRNA的表达水平。

结果

各组大鼠的体质量、PIF、PEF、Vt、Mv、EF50、血清Mg2+浓度,肺组织W/D比值、TGF-β1 mRNA、TGF-β1蛋白水平,BALF中TNF-α、PCⅢ含量,膈肌重量、MURF-1 mRNA、FoxO1 mRNA和MYH2蛋白表达水平比较,差异均有统计学意义(F = 21.248、57.536、34.547、26.022、32.458、90.029、79.975、20.767、37.857、99.653、64.862、46.587、19.187、32.653、41.110、71.535,P均< 0.001)。进一步两两比较发现,与MgPic组比较,ARDS组大鼠体质量、膈肌重量及MYH2蛋白表达水平均显著升高,MURF-1 mRNA和FoxO1 mRNA表达水平均显著下降(P均< 0.05);Dex组大鼠体质量、膈肌重量及MYH2蛋白表达水平均显著降低,MURF-1 mRNA和FoxO1 mRNA表达水平均显著升高(P均< 0.05);ARDS组和Dex组大鼠PIF、PEF、Vt、Mv和EF50水平及Mg2+浓度均显著降低,且ARDS组PIF、PEF、Vt、Mv和EF50水平更低,而Mg2+浓度在Dex组更低(P均< 0.05);ARDS组和Dex组肺组织的W/D比值、TGF-β1 mRNA、TGF-β1蛋白水平,BALF中TNF-α和PCⅢ水平均显著升高,且ARDS组更高(P均< 0.05)。

结论

MgPic能够增强Dex对ARDS大鼠肺组织纤维化的抑制作用,改善Dex引起的膈肌萎缩,有助于改善肺功能。

Objective

To investigate the effect of magnesium picolinate (MgPic) on lung and diaphragm of rats with acute respiratory distress syndrome (ARDS) treated with dexamethasone (Dex).

Methods

Twenty healthy adult male Sprague-Dawley rats were randomly assigned to a control group, an ARDS group, a Dex group, and a MgPic group, with five rats in each group. Rats in the control group were given 2 mL/kg isotonic NaCl solution with endotracheal atomization, and rats in the other three groups received endotracheally atomized lipopolysaccharide (4 mg/kg) to induce ARDS. After successful modeling, rats in the Dex and MgPic groups were intraperitoneally injected with Dex (1 mg·kg-1·d-1) for seven consecutive days. Rats in the control, ARDS, and Dex groups were fed a standard diet, while rats in the MgPic group were fed a standard diet supplemented with 500 mg/kg MgPic. After continuous feeding for seven days and fasting for 12 h, the body mass and serum Mg2+ concentration of rats were measured, and the lung function was evaluated, including peak inspiratory flow rate (PIF), peak expiratory flow rate (PEF), tidal volume (Vt), minute ventilation (Mv), and mid-expiratory flow rate (EF50). The wet/dry weight (W/D) ratio of lung tissue was calculated and the diaphragmatic weight was measured. The concentrations of tumor necrosis factor-alpha (TNF-α) and type Ⅲ procollagen (PCⅢ) in bronchoalveolar lavage fluid (BALF) were detected. The expression levels of transforming growth factor-beta1 (TGF-β1) in lung tissue and myosin heavy chain 2 (MYH2) in diaphragm tissue were detected by western-blotting. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of TGF-β1 messenger RNA (mRNA) in lung tissue, and muscle ring finger 1 (MURF-1) and forkhead box class O1 (FoxO1) mRNA in diaphragm tissue.

Results

The body mass, PIF, PEF, Vt, Mv, EF50, serum Mg2+ concentration, W/D ratio, TGF-β1 mRNA and TGF-β1 protein in lung tissue, TNF-α and PCⅢ content in BALF, diaphragmatic weight, MURF-1 mRNA, FoxO1 mRNA, and MYH2 protein in each group all showed significant differences (F = 21.248, 57.536, 34.547, 26.022, 32.458, 90.029, 79.975, 20.767, 37.857, 99.653, 64.862, 46.587, 19.187, 32.653, 41.110, 71.535; all P < 0.001). Further pairwise comparison found that compared with the MgPic group, the body mass, diaphragmatic weight, and MYH2 protein expression were significantly increased, while MURF-1 and FoxO1 mRNA expression levels were significantly decreased in the ARDS group (all P < 0.05). The body mass, diaphragmatic weight, and MYH2 protein expression were significantly decreased, while MURF-1 and FoxO1 mRNA expression levels were significantly increased in the Dex group compared with the MgPic group (all P < 0.05). The PIF, PEF, Vt, Mv, EF50, and Mg2+ concentration were decreased in the ARDS and Dex groups, and the levels of PIF, PEF, Vt, Mv, and EF50 were lowest in the ARDS group, while the concentration of Mg2+ was lowest in the Dex group compared with the MgPic group (all P < 0.05). The W/D ratio, TGF-β1 mRNA and TGF-β1 protein levels in lung tissue, and TNF-α and PCⅢ levels in BALF were obviously increased in the ARDS and Dex groups compared with the MgPic group, and the above indicators were highest in the ARDS group (all P < 0.05).

Conclusion

MgPic can enhance the inhibitory effect of Dex on lung tissue fibrosis, improve diaphragm atrophy caused by Dex, and help to improve lung function in rats with ARDS.

表1 各组大鼠体质量、肺功能指标和血清Mg2+浓度的比较( ± s
图1 各组大鼠TGF-β1蛋白表达水平的比较(n = 5)注:TGF-β1.转化生长因子β1;GAPDH.甘油醛-3-磷酸脱氢酶;ARDS.急性呼吸窘迫综合征;Dex.地塞米松;MgPic.吡啶甲酸镁;与对照组比较,aP < 0.05;与ARDS组比较,bP < 0.05;与Dex组比较,cP < 0.05
表2 各组大鼠肺组织W/D比值、TGF-β1 mRNA水平的比较( ± s
表3 各组大鼠BALF中TNF-α和PCⅢ水平的比较( ± s
图2 各组大鼠MYH2蛋白表达水平的比较(n = 5)注:MYH2.抗肌球蛋白重链2;GAPDH.甘油醛-3-磷酸脱氢酶;ARDS.急性呼吸窘迫综合征;Dex.地塞米松;MgPic.吡啶甲酸镁;与对照组比较,aP < 0.05;与ARDS组比较,bP < 0.05;与Dex组比较,cP < 0.05
表4 各组大鼠膈肌重量、MURF-1和FoxO1 mRNA水平的比较( ± s
图3 各组大鼠肺组织病理学改变(HE染色 × 200)注:HE.苏木素-伊红;ARDS.急性呼吸窘迫综合征;Dex.地塞米松;MgPic.吡啶甲酸镁;a图为对照组,可见肺组织结构完整;b图为ARDS组,可见肺组织结构严重破坏和肺泡隔显著增厚,肺泡萎缩,肺泡腔内炎症细胞浸润;c图为Dex组,可见肺组织损伤减轻,肺泡间隔中度增厚;d图为MgPic组,可见肺泡间隔隔轻度增厚
图4 各组大鼠肺组织病理学改变(Masson染色 × 400)注:ARDS.急性呼吸窘迫综合征;Dex.地塞米松;MgPic.吡啶甲酸镁;a图为对照组,未见明显纤维化改变;b图为ARDS组,可见大量、弥漫性分布的蓝色胶原纤维;c图为Dex组,可见局灶性分布的胶原纤维;d图为MgPic组,可见呈现丝状分布的胶原纤维
图5 各组大鼠膈肌组织病理学改变(HE染色 × 200)注:HE.苏木素-伊红;ARDS.急性呼吸窘迫综合征;Dex.地塞米松;MgPic.吡啶甲酸镁;a图为对照组,可见膈肌结构正常;b图为ARDS组,可见炎症细胞浸润;c图为Dex组,可见膈肌纤维排列紊乱,脂肪细胞明显浸润;d图为MgPic组,可见脂肪细胞轻微浸润
1
Gorman EA, O'Kane CM, McAuley DF. Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management[J]. Lancet, 2022, 400 (10358): 1157-1170.
2
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315 (8): 788-800.
3
Man S, Sanchez Duffhues G, Ten Dijke P, et al. The therapeutic potential of targeting the endothelial-to-mesenchymal transition[J]. Angiogenesis, 2019, 22 (1): 3-13.
4
Ma K, Li C, Xu J, et al. LncRNA Gm16410 regulates PM2.5-induced lung endothelial-mesenchymal transition via the TGF-β1/Smad3/p-Smad3 pathway[J]. Ecotoxicol Environ Saf, 2020 (205): 111327.
5
陈俊伊,王懿春.微小RNA-21和转化生长因子β1在急性呼吸窘迫综合征大鼠肺纤维化组织中的表达变化[J/CD].中华危重症医学杂志(电子版)20169(4):234-239.
6
George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy[J]. Lancet Respir Med, 2020, 8 (8): 807-815.
7
Burnham EL, Janssen WJ, Riches DW, et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance[J]. Eur Respir J, 2014, 43 (1): 276-285.
8
Boucher PE, Taplin J, Clement F. The cost of ARDS: a systematic review[J]. Chest, 2022, 161 (3): 684-696.
9
Hauschildt KE, Seigworth C, Kamphuis LA, et al. Patients' adaptations after acute respiratory distress syndrome: a qualitative study[J]. Am J Crit Care, 2021, 30 (3): 221-229.
10
Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial[J]. Lancet Respir Med, 2020, 8 (3): 267-276.
11
Wang C, Hu F. Long noncoding RNA SOX2OT silencing alleviates cerebral ischemia-reperfusion injury via miR-135a-5p-mediated NR3C2 inhibition[J]. Brain Res Bull, 2021 (173): 193-202.
12
陈进敏,陆远强.危重症患者膈肌功能障碍的超声评估研究[J/CD].中华危重症医学杂志(电子版)202013(6):466-470.
13
Guerrero-Romero F, Micke O, Simental-Mendía LE, et al. Importance of magnesium status in COVID-19[J]. Biology (Basel), 2023, 12 (5): 735.
14
Nouri-Majd S, Ebrahimzadeh A, Mousavi SM, et al. Higher intake of dietary magnesium is inversely associated with COVID-19 severity and symptoms in hospitalized patients: a cross-sectional study[J]. Front Nutr, 2022 (9): 873162.
15
Wang K, Wang Y, Cao Y, et al. Lumican is elevated in the lung in human and experimental acute respiratory distress syndrome and promotes early fibrotic responses to lung injury[J]. J Transl Med, 2022, 20 (1): 392.
16
Marwah V, Choudhary R, Malik V, et al. Early experience of nintedanib in COVID-19 ARDS-related pulmonary fibrosis: a case series[J]. Adv Respir Med, 2021, 89 (6): 589-596.
17
严一核,孙雪东,李智鑫,等.急性呼吸窘迫综合征患者肺泡微环境对肺成纤维细胞生物学活性的影响[J/CD].中华危重症医学杂志(电子版)201811(3):151-156.
18
张锐,沈雅芳,安肖霞,等.黄芩苷对博来霉素诱导肺纤维化小鼠的保护作用及其机制[J/CD].中华危重症医学杂志(电子版)202013(1):49-54.
19
Zhang R, Tan Y, Yong C, et al. Pirfenidone ameliorates early pulmonary fibrosis in LPS-induced acute respiratory distress syndrome by inhibiting endothelial-to-mesenchymal transition via the Hedgehog signaling pathway[J]. Int Immunopharmacol, 2022 (109): 108805.
20
Cottin V, Selman M, Inoue Y, et al. Syndrome of combined pulmonary fibrosis and emphysema: an official ATS/ERS/JRS/ALAT research statement[J]. Am J Respir Crit Care Med, 2022, 206 (4): e7-e41.
21
Sang X, Wang Y, Xue Z, et al. Macrophage-targeted lung delivery of dexamethasone improves pulmonary fibrosis therapy via regulating the immune microenvironment[J]. Front Immunol, 2021 (12): 613907.
22
Lai X, Lin Y, Huang S, et al. Dexmedetomidine alleviates pulmonary fibrosis through the ADORA2B-mediated MAPK signaling pathway[J]. Respir Res, 2023, 24 (1): 214.
23
杨茂宪,姚明,徐龙生,等.姜黄素对急性呼吸窘迫综合征大鼠肺组织及气道重塑的影响[J/CD].中华危重症医学杂志(电子版)202114(5):368-373.
24
Meduri GU, Annane D, Confalonieri M, et al. Pharmacological principles guiding prolonged glucocorticoid treatment in ARDS[J]. Intensive Care Med, 2020, 46 (12): 2284-2296.
25
Marino MM, Grijota FJ, Bartolomé I, et al. Influence of physical training on erythrocyte concentrations of iron, phosphorus and magnesium[J]. J Int Soc Sports Nutr, 2020, 17 (1): 8.
26
Li W, Wu X, Yu J, et al. Magnesium sulfate attenuates lipopolysaccharides-induced acute lung injury in mice[J]. Chin J Physiol, 2019, 62 (5): 203-209.
27
Luo X, Deng Q, Xue Y, et al. Anti-fibrosis effects of magnesium lithospermate B in experimental pulmonary fibrosis: by inhibiting TGF-βRI/Smad signaling[J]. Molecules, 2021, 26 (6): 1715.
28
Chaigne-Delalande B, Li FY, O'Connor GM, et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D[J]. Science, 2013, 341 (6142): 186-191.
29
朱孟雷,刘虹,韩继斌,等.膈肌超声对重症机械通气患者脱机结果的预测价值[J/CD].中华危重症医学杂志(电子版)202114(5):425-429.
[1] 赖圣杰, 方欣, 方友强. 2023年欧洲内分泌学会及加拿大泌尿外科学会肾上腺偶发瘤诊疗指南解读[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 309-312.
[2] 阙宏亮, 邓君鹏, 李权, 曾腾跃, 沈华, 谢建军. 俯卧位经后腹腔肾上腺腹腔镜手术的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 188-192.
[3] 暴静, 吴霞, 田雅萍, 尹钢. 维生素D3联合孟鲁司特钠治疗支气管哮喘对血清VEGF、TGF-β1及肺功能的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 63-67.
[4] 周恩竹, 刘敏, 万秋, 刘静文, 唐莉歆. 慢性阻塞性肺疾病与获得性免疫缺陷综合征共病的临床特征分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 78-82.
[5] 方慧慧, 方明, 黄娟, 张华, 王晓娟. 布地格福吸入治疗对COPD患者IL-6、CRP水平及肺功能的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 91-94.
[6] 陈先志, 许磊, 冯其柱, 王琦. 布地奈德联合复方异丙托溴铵雾化吸入在老年患者腹腔镜围手术期中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 531-536.
[7] 朱垒, 汪斌, 张爱民, 陈晓燕, 张艳冰, 齐浩龙. 小剂量地塞米松在腹腔镜下经胆囊管胆道探查围手术期中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 339-343.
[8] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
[9] 王永广, 朱鹏, 许千金, 甘桂芬, 石钟山, 潘纯. 急性呼吸窘迫综合征诊断标准亟需更新[J]. 中华重症医学电子杂志, 2024, 10(02): 113-117.
[10] 史楠, 袁雪燕, 邱海波. 肺复张在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 118-126.
[11] 孙藏岚, 黄丽丽, 李小雨, 邱海波. 脂质组学在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 127-135.
[12] 王晶晶, 谢晖, 邓璞钰, 张晨晨, 田学, 谢云, 王瑞兰. 新型冠状病毒感染ARDS患者EIT监测下俯卧位通气成像的改变[J]. 中华重症医学电子杂志, 2024, 10(01): 31-37.
[13] 梁明, 魏珍, 祖合热·肉孜, 李金贤. 超声评估脑卒中气管切开患者膈肌功能与肺功能的相关性研究[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 133-139.
[14] 张克, 张二明, 闫维, 马石头, 安欣华, 包曹歆, 向平超. 北京石景山区40岁以上PRISm和COPD患者的肺功能水平与吸烟情况相关性分析[J]. 中华临床医师杂志(电子版), 2024, 18(02): 122-127.
[15] 詹崇文, 汪洁, 沈奇伟, 花荣, 姚琪远. 胃袖状切除术联合膈肌脚塑形术对术后胃食管反流的影响[J]. 中华胃食管反流病电子杂志, 2024, 11(01): 1-5.
阅读次数
全文


摘要