切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2024, Vol. 17 ›› Issue (05) : 353 -362. doi: 10.3877/cma.j.issn.1674-6880.2024.05.001

论著

组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究
江雅婷1, 刘林峰1, 沈辰曦2, 陈奔1, 刘婷1, 龚裕强1,()   
  1. 1.325000 浙江温州,温州医科大学附属第二医院重症医学科
    2.325000 浙江温州,温州医科大学附属第二医院麻醉与围术期医学科
  • 收稿日期:2024-06-01 出版日期:2024-10-31
  • 通信作者: 龚裕强
  • 基金资助:
    国家自然科学基金项目(82300072)浙江省自然科学基金项目(LY19H150002)温州市基础性科研项目(Y20210094)

Mechanism of Maresin conjugates in tissue regeneration 3 protecting pulmonary vascular endothelial glycocalyx in acute respiratory distress syndrome

Yating Jiang1, Linfeng Liu1, Chenxi Shen2, Ben Chen1, Ting Liu1, Yuqiang Gong1,()   

  1. 1.Department of Intensive Medicine,the Second Affiliated Hospital of Wenzhou Medical University,Wenzhou 325000,China
    2.Department of Anesthesia and Perioperative Medicine,the Second Affiliated Hospital of Wenzhou Medical University,Wenzhou 325000,China
  • Received:2024-06-01 Published:2024-10-31
  • Corresponding author: Yuqiang Gong
引用本文:

江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.

Yating Jiang, Linfeng Liu, Chenxi Shen, Ben Chen, Ting Liu, Yuqiang Gong. Mechanism of Maresin conjugates in tissue regeneration 3 protecting pulmonary vascular endothelial glycocalyx in acute respiratory distress syndrome[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2024, 17(05): 353-362.

目的

探讨组织相关巨噬素3(MCTR3)对脂多糖(LPS)诱导的急性呼吸窘迫综合征(ARDS)小鼠肺血管内皮糖萼降解的保护作用及机制。

方法

将120 只C57BL/6 小鼠分为对照组、LPS 组、LPS+MCTR3 组和MCTR3 组,每组各30 只。对照组和MCTR3 组小鼠气管内给予等渗NaCl 溶液(50 μL),LPS 组和LPS+MCTR3 组小鼠气管内给予LPS(1 mg/kg,溶于50 μL等渗NaCl 溶液中)建立ARDS 模型,LPS + MCTR3 组和MCTR3 组同时尾静脉注射MCTR3(8 mg/kg),4 组均为6 h 后取材。观察各组小鼠临床预后以及相关病理改变,电镜观察肺血管内皮糖萼及肺泡上皮细胞线粒体结构变化。

结果

气管内给予等渗NaCl 溶液后4 d,对照组与MCTR3 组无小鼠死亡,而LPS 组仅1 只小鼠存活,LPS+MCTR3 组4 只存活。4 组小鼠4 d 生存情况比较,差异有统计学意义(χ2=22.810,P <0.001),且LPS 组小鼠4 d 生存情况较对照组和MCTR3 组均明显下降;LPS+MCTR3 组小鼠4 d 生存情况显著优于LPS 组(P 均<0.001)。4 组小鼠的动脉血氧分压(PaO2)、氧合指数、肺损伤评分、肺组织湿/干重(W/D)比、肿瘤坏死因子α(TNF-α)、白细胞介素1β(IL-1β)、内皮糖萼脱落产物硫酸乙酰肝素蛋白多糖2(HSPG2)、多配体蛋白聚糖1(SDC-1),肺血管内皮糖萼降解标志物乙酰肝素酶(HPA)、内皮糖萼相关蛋白SDC-1 以及线粒体相关蛋白抗沉默信息调节因子1(SIRT1)、过氧化物酶体增殖物激活受体γ 共激活因子1α(PGC-1α)、核呼吸因子1(NRF1)、NRF2、线粒体转录因子A(TFAM)和Flameng 评分比较,差异均有统计学意义(F = 8.812、21.470、123.451、148.994、57.906、92.948、47.971、88.109、26.839、31.928、12.444、5.537、9.865、12.423、16.352、294.910,P 均<0.001)。且LPS+MCTR3 组PaO2、氧合指数、SDC-1、SIRT1、PGC-1α、NRF1、NRF2、TFAM 蛋白均较LPS 组显著升高,肺损伤评分、肺组织W/D 比、TNF-α、IL-1β、HSPG2、SDC-1、HPA 蛋白和Flameng 评分均显著降低(P 均<0.05)。

结论

MCTR3 可以改善ARDS 小鼠的临床预后、病理变化,促进炎症消退,其可能的机制是通过改善肺泡上皮细胞线粒体功能,减少ARDS 小鼠肺血管内皮糖萼的降解。

Objective

To investigate the protective effects and mechanisms of Maresin conjugates in tissue regeneration 3 (MCTR3) on the degradation of pulmonary vascular endothelial glycocalyx in mice with lipopolysaccharide (LPS)-induced acute respiratory distress syndrome(ARDS).

Methods

A total of 120 C57BL/6 mice were divided into four groups according to a random number table: a Control group, a LPS group, a LPS + MCTR3 group, and a MCTR3 group, with 30 mice in each group.The Control and MCTR3 groups received intratracheal administration of isotonic NaCl solution (50 μL), while the LPS and LPS + MCTR3 groups intratracheally received LPS (1 mg/kg in 50 μL saline) to establish a ARDS model.Additionally,the LPS + MCTR3 and MCTR3 groups intravenously received MCTR3 (8 mg / kg).All groups were sampled 6 hours later.The clinical prognosis and related pathological changes were observed in each group.Electron microscopy was used to observe the structure of pulmonary vascular endothelial glycocalyx and alveolar epithelial cell mitochondria.

Results

After administering isotonic NaCl solution intratracheally for 4 days, there were no deaths in the Control and MCTR3 groups, whereas only one mouse survived in the LPS group, and four mice survived in the LPS + MCTR3 group.The difference in 4-d survival among the groups was statistically significant (χ2=22.810, P <0.001).Moreover, the 4-d survival of mice in the LPS group was significantly decreased compared with the Control and MCTR3 groups; the 4-d survival of mice in the LPS+MCTR3 group was significantly better than that of the LPS group (all P <0.001).The arterial partial pressure of oxygen (PaO2), oxygenation index, pathological injury scores, lung tissue wet/dry weight (W/D) ratio, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), endothelial glycocalyx degradation products of heparan sulfate proteoglycan 2(HSPG2) and syndecan-1 (SDC-1), glycocalyx degradation marker heparanase (HPA), endothelial glycocalyx-related protein SDC-1, mitochondrial-associated proteins of Sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), nuclear respiratory factor 1(NRF1), NRF2 and mitochondrial transcription factor A (TFAM), and Flameng scores showed statistically significant differences among these four groups (F=8.812, 21.470, 123.451, 148.994,57.906, 92.948, 47.971, 88.109, 26.839, 31.928, 12.444, 5.537, 9.865, 12.423, 16.352, 294.910;all P <0.001).Further pairwise comparisons revealed that compared to the LPS group, the PaO2,oxygenation index, and protein expression levels of SDC-1, SIRT1, PGC-1α, NRF1, NRF2 and TFAM were significantly higher, while the lung tissue pathological injury scores, W/D ratio, TNFα, IL-1β, HSPG2, SDC-1, HPA protein, and Flameng scores were reduced in the LPS + MCTR3 group (all P <0.05).

Conclusions

MCTR3 can improve clinical outcomes and pathological changes in ARDS mice, promoting the resolution of inflammation.Its potential mechanism may involve improving mitochondrial function in alveolar epithelial cells and reducing glycocalyx degradation in the pulmonary vasculature of ARDS mice.

图1 各组小鼠Kaplan-Meier 生存曲线图 注:LPS.脂多糖;MCTR3.组织相关巨噬素3
图2 各组小鼠血气分析结果 注:1 mmHg = 0.133 kPa;PaO2.动脉血氧分压;LPS.脂多糖;MCTR3.组织相关巨噬素3;与对照组比较,aP <0.05;与LPS 组比较,bP <0.05
图3 各组小鼠肺组织病理变化及肺组织W/D 比的比较 注:W/D.湿/干重;LPS.脂多糖;MCTR3.组织相关巨噬素3;HE.苏木素-伊红;a ~d 图分别为对照组、LPS 组、LPS+MCTR3 组、MCTR3 组小鼠肺组织病理结果(HE 染色 ×400);a 图和d 图可见肺泡结构完整,肺泡壁薄,肺泡间隔清晰,没有明显病理改变;b 图可见肺泡壁明显增厚,肺组织间大量中性粒细胞浸润,肺泡和血管内皮细胞间连接破坏,肺水肿;c 图可见肺组织结构轻微破坏,存在少量中性粒细胞浸润,肺泡和血管内皮细胞间连接存在;e 图为4 组小鼠肺组织病理损伤评分比较;f 图为4 组小鼠肺组织W/D(右肺上叶)比比较;与对照组比较,aP <0.05;与LPS 组比较,bP <0.05
图4 各组小鼠血浆炎症因子水平的比较 注:TNF-α.肿瘤坏死因子α;IL-1β.白细胞介素1β;LPS.脂多糖;MCTR3.组织相关巨噬素3;与对照组比较,aP <0.05;与LPS 组比较,bP <0.05
图5 各组小鼠肺血管内皮糖萼的电镜和ELISA 结果 注:ELISA.酶联免疫吸附测定;LPS.脂多糖;MCTR3.组织相关巨噬素3;HSPG2.硫酸乙酰肝素蛋白多糖2;SDC-1.多配体蛋白聚糖1;a ~d 图分别为对照组、LPS 组、LPS+MCTR3 组和MCTR3 组小鼠肺血管内皮糖萼电镜结果,黑色箭头表示内皮糖萼结构(电镜 ×60 000);a 图可见内皮糖萼结构完整,为高密度黑色线状;b 图可见肺血管内皮糖萼遭受破坏,黑色致密结构消失;c 图可见血管内皮糖萼损伤减轻,为不连续的黑色致密结构线样结构;d 图可见完整血管内皮糖萼结构;e ~f 图为ELISA 检测血浆内皮糖萼脱落标志物HSPG2、SDC-1 结果;与对照组比较,aP <0.05;与LPS 组比较,bP <0.05
图6 各组小鼠肺血管内皮糖萼免疫荧光结果(免疫荧光染色 ×200) 注:LPS.脂多糖;MCTR3.组织相关巨噬素3;HSPG2.硫酸乙酰肝素蛋白多糖2;BDCA-3 为内皮细胞标记物;DAPI.4',6-二脒基-2-苯基吲哚;DAPI 定位细胞核,为蓝色荧光;HSPG2 标记血管内皮糖萼的组成成分,为绿色荧光;BDCA-3 标记内皮细胞,为红色荧光;对照组和MCTR3组显示血管内皮糖萼与内皮细胞大量共定位;LPS 组显示内皮细胞大量损伤,标志物表达减少,同时血管内皮糖萼表达显著减少;LPS+MCTR3组显示血管内皮糖萼表达相较LPS 组有改善
图7 各组小鼠肺血管内皮糖萼蛋白表达水平的比较 注:HPA.乙酰肝素酶;SDC-1.多配体蛋白聚糖1;LPS.脂多糖;MCTR3.组织相关巨噬素3;与对照组比较,aP <0.05;与LPS 组比较,bP <0.05
图8 各组小鼠肺血管内皮糖萼的电镜和ELISA 结果 注:ELISA.酶联免疫吸附测定;SIRT1.沉默信息调节因子1;PGC-1α.过氧化物酶体增殖物激活受体γ 共激活因子1α;NRF1.核呼吸因子1;NRF2.核呼吸因子2;TFAM.线粒体转录因子A;LPS.脂多糖;MCTR3.组织相关巨噬素3;与对照组比较,aP <0.05;与LPS 组比较,bP <0.05
图9 各组小鼠肺泡上皮细胞的线粒体电镜结果及Flameng 评分的比较 注:LPS.脂多糖;MCTR3.组织相关巨噬素3;a ~d 图分别为对照组、LPS 组、LPS+MCTR3 组、MCTR3 组小鼠肺泡上皮细胞线粒体的电镜结果(× 60 000);a 图和d 图可见线粒体形态结构正常,充满颗粒;b 图可见线粒体内外膜完整性消失,呈现空泡状,大量线粒体颗粒丢失,线粒体严重肿胀伴嵴断裂,大部分线粒体Flameng 评分为3 ~4 分;c 图可见线粒体轻度肿胀,部分基质颗粒丢失,线粒体嵴未断裂,大部分线粒体Flameng 评分为2 分;与对照组比较,aP <0.05;与LPS 组比较,bP <0.05
1
Matthay MA.ECMO in severe acute respiratory distress syndrome [J].Lancet Respir Med, 2019, 7 (2):106-108.
2
Stanski NL, Wong HR.Prognostic and predictive enrichment in sepsis [J].Nat Rev Nephrol, 2020, 16 (1):20-31.
3
Uchimido R, Schmidt EP, Shapiro NI.The glycocalyx:a novel diagnostic and therapeutic target in sepsis[J].Crit Care, 2019, 23 (1): 16.
4
林源希,李真玉.糖萼在脓毒症血管内皮损伤中的变化及其修复策略研究进展[J].解放军医学杂志,2022,47(10):1049-1056.
5
祁峰,陈建荣,张劲松.内皮糖萼在急性呼吸窘迫综合征中的研究进展[J/CD].中华危重症医学杂志(电子版),2024,17(1):73-77.
6
Schmidt EP, Yang Y, Janssen WJ, et al.The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis[J].Nat Med, 2012, 18 (8): 1217-1223.
7
陈加弟,龚迪,易玉虎,等.血管内皮糖萼在脓毒症急性肺损伤病理机制及诊断治疗中的作用[J].解放军医学杂志,2021,46(4):398-403.
8
Vittum Z, Cocchiaro S, Mensah SA.Basal endothelial glycocalyx's response to shear stress: a review of structure, function, and clinical implications [J].Front Cell Dev Biol, 2024 (12): 1371769.
9
Bos LDJ, Ware LB.Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes [J].Lancet, 2022, 400 (10358): 1145-1156.
10
Dutra Silva J, Su Y, Calfee CS, et al.Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS [J].Eur Respir J, 2021, 58(1): 2002978.
11
Sullivan RC, Rockstrom MD, Schmidt EP, et al.Endothelial glycocalyx degradation during sepsis: causes and consequences [J].Matrix Biol Plus, 2021 (12):100094.
12
Kiriyama Y, Nochi H.Intra-and intercellular quality control mechanisms of mitochondria [J].Cells, 2017, 7(1): 1.
13
郭智东,吴锦鸿,赵雪,等.白藜芦醇对脓毒症血管内皮屏障功能的保护作用及其机制研究[J/CD].中华危重症医学杂志(电子版),2021,14(4):281-289.
14
Dalli J, Sanger JM, Rodriguez AR, et al.Identification and actions of a novel third maresin conjugate in tissue regeneration: MCTR3 [J].PLoS One, 2016, 11 (2):e0149319.
15
Dalli J, Vlasakov I, Riley IR, et al.Maresin conjugates in tissue regeneration biosynthesis enzymes in human macrophages [J].Proc Natl Acad Sci U S A,2016, 113 (43): 12232-12237.
16
Pistorius K, Ly L, Souza PR, et al.MCTR3 reprograms arthritic monocytes to upregulate Arginase-1 and exert pro-resolving and tissue-protective functions in experimental arthritis [J].EBioMedicine, 2022 (79):103974.
17
Zhuang R, Yang X, Cai W, et al.MCTR3 reduces LPS-induced acute lung injury in mice via the ALX /PINK1 signaling pathway [J].Int Immunopharmacol,2021 (90): 107142.
18
姜黎珊,姚明,杨茂宪,等.不同方式下气管内滴注脂多糖方法制作急性呼吸窘迫综合征大鼠模型[J/CD].中华危重症医学杂志(电子版),2019,12(2):80-84.
19
Bendib I, Beldi-Ferchiou A, Schlemmer F, et al.Alveolar compartmentalization of inflammatory and immune cell biomarkers in pneumonia-related ARDS [J].Crit Care, 2021, 25 (1): 23.
20
Matthay MA, Arabi Y, Arroliga AC, et al.A new global definition of acute respiratory distress syndrome[J].Am J Respir Crit Care Med, 2024, 209 (1): 37-47.
21
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al.Acute respiratory distress syndrome: the Berlin Definition [J].JAMA, 2012, 307 (23): 2526-2533.
22
He J, Zhao Y, Fu Z, et al.A novel tree shrew model of lipopolysaccharide-induced acute respiratory distress syndrome[J].J Adv Res, 2024 (56): 157-165.
23
Ye Y, Yang Q, Wei J, et al.RvD1 improves resident alveolar macrophage self-renewal via the ALX /MAPK14 / S100A8 / A9 pathway in acute respiratory distress syndrome[J].J Adv Res, 2024: S2090-1232(24)00030-00034.
24
Chen H, Bai C, Wang X.The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine[J].Expert Rev Respir Med, 2010,4 (6): 773-783.
25
Hong SB, Koh Y, Lee IC, et al.Induced hypothermia as a new approach to lung rest for the acutely injured lung[J].Crit Care Med, 2005, 33 (9): 2049-2055.
26
李璐璐,马利红,金佳佳,等.干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J/CD].中华危重症医学杂志(电子版),2024,17(2):97-103.
27
杨茂宪,沈鹏,王倩倩,等.吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J/CD].中华危重症医学杂志(电子版),2024,17(3):196-203.
28
Flameng W, Borgers M, Daenen W, et al.Ultrastructural and cytochemical correlates of myocardial protection by cardiac hypothermia in man[J].J Thorac Cardiovasc Surg, 1980, 79 (3): 413-424.
29
刘树荣,余斌,焦保平,等.热缺血损伤对大鼠心脏死亡供肝线粒体形态和功能的影响[J].中国组织工程研究,2014(5):681-686.
30
Englert JA, Bobba C, Baron RM.Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome [J].JCI Insight,2019, 4 (2): e124061.
31
Sinha P, Meyer NJ, Calfee CS.Biological phenotyping in sepsis and acute respiratory distress syndrome [J].Annu Rev Med, 2023 (74): 457-471.
32
Oshima K, King SI, McMurtry SA, et al.Endothelial heparan sulfate proteoglycans in sepsis: the role of the glycocalyx [J].Semin Thromb Hemost, 2021, 47 (3):274-282.
33
刘增波,梅长林,胡惠民,等.乙酰肝素酶对脓毒症肾小球内皮细胞糖萼的影响[J].中华肾脏病杂志,2014,30(7):524-529.
34
Iba T, Levy JH.Derangement of the endothelial glycocalyx in sepsis[J].J Thromb Haemost, 2019, 17 (2):283-294.
35
Florian JA, Kosky JR, Ainslie K, et al.Heparan sulfate proteoglycan is a mechanosensor on endothelial cells[J].Circ Res, 2003, 93 (10): e136-142.
36
Ryanto G, Suraya R, Nagano T.Mitochondrial dysfunction in pulmonary hypertension [J].Antioxidants(Basel), 2023, 12 (2): 372.
37
赵亮,邱蕾,谷长平,等.线粒体动力相关蛋白1 在炎症性肺实质疾病中的作用机制及研究进展[J].国际麻醉学与复苏杂志,2024,45(2):190-195.
38
Abdullah S, Karim M, Legendre M, et al.Hemorrhagic shock and resuscitation causes glycocalyx shedding and endothelial oxidative stress preferentially in the lung and intestinal vasculature[J].Shock, 2021, 56 (5): 803-812.
39
Li X, Jamal M, Guo P, et al.Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK / SIRT1 pathways [J].Biomed Pharmacother, 2019 (118):109363.
40
Yang Y, Zhu Y, Xiao J, et al.Maresin conjugates in tissue regeneration 1 prevents lipopolysaccharide-induced cardiacdysfunctionthroughimprovementof mitochondrial biogenesis and function [J].Biochem Pharmacol, 2020 (177): 114005.
41
Levy BD, Abdulnour RE, Tavares A, et al.Cysteinyl maresins regulate the prophlogistic lung actions of cysteinyl leukotrienes [J].J Allergy Clin Immunol,2020, 145 (1): 335-344.
[1] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[2] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[3] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[4] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[5] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[6] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[7] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[8] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[9] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[10] 孙藏岚, 黄丽丽, 李小雨, 邱海波. 脂质组学在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 127-135.
[11] 史楠, 袁雪燕, 邱海波. 肺复张在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 118-126.
[12] 王永广, 朱鹏, 许千金, 甘桂芬, 石钟山, 潘纯. 急性呼吸窘迫综合征诊断标准亟需更新[J]. 中华重症医学电子杂志, 2024, 10(02): 113-117.
[13] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
[14] 计超, 向群. 乙酰胆碱受体对急性呼吸窘迫综合征小鼠T细胞亚群和炎症因子的影响[J]. 中华诊断学电子杂志, 2024, 12(01): 50-56.
[15] 罗婷, 邱令智, 易东, 鄢华. 线粒体功能障碍与心血管疾病、缺血性脑卒中及慢性肾脏病关系的研究进展[J]. 中华脑血管病杂志(电子版), 2024, 18(01): 60-63.
阅读次数
全文


摘要