切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2018, Vol. 11 ›› Issue (02) : 78 -82. doi: 10.3877/cma.j.issn.1674-6880.2018.02.002

所属专题: 文献

论著

补肾活血法对慢性再生障碍性贫血小鼠的干预作用研究
孙菊1, 刘梅1, 吴迪炯2, 刘文宾2, 胡慧瑾2, 叶宝东2,()   
  1. 1. 310053 杭州,浙江中医药大学第一临床医学院
    2. 310006 杭州,浙江中医药大学附属第一医院血液科
  • 收稿日期:2018-02-17 出版日期:2018-04-01
  • 通信作者: 叶宝东
  • 基金资助:
    国家自然科学基金资助项目(81373634); 浙江省卫计委创新人才资助计划项目(1S21702); 浙江中医药大学附属第一医院三鹰人才资助计划项目(ZD01601)

Intervention effect of invigorating kidney and activating blood in mice with chronic aplastic anemia

Ju Sun1, Mei Liu1, Dijiong Wu2, Wenbin Liu2, Huijin Hu2, Baodong Ye2,()   

  1. 1. The First Clinical Medical Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China
    2. Department of Hematology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
  • Received:2018-02-17 Published:2018-04-01
  • Corresponding author: Baodong Ye
  • About author:
    Corresponding author: Ye Baodong, Email:
引用本文:

孙菊, 刘梅, 吴迪炯, 刘文宾, 胡慧瑾, 叶宝东. 补肾活血法对慢性再生障碍性贫血小鼠的干预作用研究[J]. 中华危重症医学杂志(电子版), 2018, 11(02): 78-82.

Ju Sun, Mei Liu, Dijiong Wu, Wenbin Liu, Huijin Hu, Baodong Ye. Intervention effect of invigorating kidney and activating blood in mice with chronic aplastic anemia[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2018, 11(02): 78-82.

目的

探讨补肾活血法对慢性再生障碍性贫血小鼠的干预作用及其机制。

方法

建立肾虚合并慢性再生障碍性贫血小鼠模型,将30只小鼠分成中药组、模型组和对照组,每组10只。中药组小鼠给予中药汤剂灌胃0.2 mL/次,2次/d,共60 d,模型组和对照组小鼠给予灌胃相同剂量等渗NaCl溶液。观察小鼠一般情况;于苯试剂皮下注射第16、25次后检测所有小鼠的白细胞、血红蛋白及血小板水平;采用酶联免疫吸附试验检测血管内皮生成因子(VEGF)和基质细胞衍生因子1a(SDF-1a);同时,电子显微镜下计算骨髓有核细胞个数;苏木素-伊红(HE)染色观察骨髓病理情况。

结果

模型组和中药组的小鼠逐渐出现体质量下降、乏力萎靡、毛发枯疏、四肢苍白等表现。随着中药治疗时间延长,中药组小鼠的上述症状均有不同程度恢复。三组小鼠间白细胞、血红蛋白及血小板计数的比较,差异均有统计学意义(F=16.536、9.273、5.667,P均< 0.05),与对照组相比,模型组及中药组小鼠相同时间点上述指标均明显下降(P均< 0.05),且当苯试剂皮下注射第25次后,中药组小鼠的白细胞、血红蛋白及血小板较模型组均明显升高(P均< 0.05)。三组小鼠间VEGF、SDF-1a水平及骨髓有核细胞的比较,差异均有统计学意义(F=11.231、7.924、8.455,P均< 0.05),且与对照组比较,模型组及中药组小鼠的VEGF[(342 ± 11)、(235 ± 13)、(278 ± 13)ng/L]、SDF-1a[(110 ± 13)、(85 ± 11)、(93 ± 12)ng/L]水平及骨髓有核细胞[(94 ± 15)、(72 ± 11)、(83 ± 13)个/HP]均明显下降,且模型组较中药组更低(P均< 0.05)。HE染色显示中药组及模型组小鼠的粒、红系及巨核细胞均有不同程度减少,但模型组上述情况更严重。

结论

补肾活血祛瘀法能够改善慢性再生障碍性贫血小鼠的临床症状,对其造血恢复有一定的作用,可能通过恢复其VEGF和SDF-1a水平有关。

Objective

To explore the intervention effect of invigorating kidney and activating blood in mice with chronic aplastic anemia (CAA) and its mechanism.

Methods

The mice model of kidney deficiency complicated with CAA was established. Totally 30 mice were divided into the medicine group, model group and control group, 10 mice in each group. Mice in the medicine group were given orally herbal soup (0.2 mL each time, 2 times a day for 60 days), and mice in the model group and control group only received the same dose of normal saline. The general condition was observed. The levels of white blood cells, hemoglobin and platelets were detected after injection of benzene for 16 and 25 times. The levels of serum vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1a (SDF-1a) were determined by enzyme linked immunosorbant assay. Meanwhile, the bone marrow nucleated cells were counted under electron microscope, and the bone marrow pathological features were observed through hatmatoxylin-eosin (HE) staining.

Results

The mice in the medicine group and model group gradually showed weight loss, fatigue, dry and sparse hair, pale limbs and so on, and as the Chinese medicine intervention prolonged, the mice in the medicine group recovered to varying degrees. The levels of white blood cells, hemoglobin and platelets all showed significant differences among three groups (F=16.536, 9.273, 5.667; all P<0.05). Above indicators at the same time in the model group and medicine group were much lower than those in the control group (all P<0.05), and above indicators after benzene injection for 25 times in the medicine group were much higher than those in the model group (all P<0.05). The levels of VEGF, SDF-1a and bone marrow nucleated cells also showed significant differences among three groups (F=11.231, 7.924, 8.455; all P<0.05). The levels of VEGF [(342 ± 11), (235 ± 13), (278 ± 13) ng/L], SDF-1a [(110 ± 13), (85 ± 11), (93 ± 12) ng/L] and bone marrow nucleated cells [(94 ± 15), (72 ± 11), (83 ± 13)/HP] in the model group and medicine group decreased more obviously compared with the control group, and they decreased most in the model group (all P<0.05). HE staining revealed that granulocyte, erythrocyte and megakaryocyte series decreased in the model group and medicine group, and the model group was less severe.

Conclusion

Invigorating kidney and activating blood may improve mice with CAA through enhancing the levels of serum VEGF and SDF-1a.

表1 各组小鼠苯试剂皮下注射第16、25次后白细胞、血红蛋白及血小板的变化(±s
表2 各组小鼠外周血清中VEGF和SDF-1a活性的变化(ng/L,±s
图1 各组小鼠骨髓象病理表现
[1]
Young NS. Current concepts in the pathophysiology and treatment of aplastic anemia[J]. Hematology Am Soc Hematol Educ Program, 2013: 76-81.
[2]
Weston W, Gupta V, Adkins R, et al. New therapeutic approaches for protecting hematopoietic stem cells in aplastic anemia[J]. Immunol Res, 2013, 57 (1-3): 34-43.
[3]
Liu L, Wang X, Jin S, et al. Haploidentical hematopoietic stem cell transplantation for nonresponders to immunosuppressive therapy against acquired severe aplastic anemia[J]. Bone Marrow Transplant, 2016, 51 (3): 424-427.
[4]
吴迪炯,周郁鸿,沈一平.慢性再生障碍性贫血中医认识及优势进展[J].中华中医药学刊,2012,30(3):500-502.
[5]
Gao W, Song YQ, Li W, et al. Study on bone marrow microvascular density in hematological diseases[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2004, 12 (6): 852-854.
[6]
Ye BD, Chen D, Wu D, et al. Effect of kidney-reinforcing, blood-activating and stasis-removing recipes on adhesion molecule expression of bone marrow mesenchymal stem cells from chronic aplastic anemia patients[J]. J Tradit Chin Med, 2012, 32 (4): 596-603.
[7]
Cui X, Wang JY, Liu K, et al. Role of heteroplasmic mutations in the mitochondrial genome and the ID4 gene promoter methylation region in the pathogenesis of chronic aplastic anemia in patients suffering from Kidney yin deficiency[J]. Chin J Integr Med, 2016, 22 (6): 412-419.
[8]
李锐,陈文娜.苯诱发再生障碍性贫血小鼠骨髓病理改变及血液细胞的变化[J].中国医药导报,2010,7(12):34-35.
[9]
Gupta P, Khurana N, Singh T, et al. Bone marrow angiogenesis in aplastic anemia-a study of CD 34 and VEGF expression in bone marrow biopsies[J]. Hematology, 2009, 14 (1): 16-21.
[10]
Füreder W, Krauth MT, Sperr WR, et al. Evaluation of angiogenesis and vascular endothelial growth factor expression in the bone marrow of patients with aplastic anemia[J]. Am J Pathol, 2006, 168 (1): 123-130.
[11]
王晓燕,叶宝东,刘文宾,等.外周血单个核细胞功能检测对急性再生障碍性贫血患者的临床意义[J/CD].中华危重症医学杂志(电子版),2015,8(3):150-153.
[12]
Wu DJ, Ye BD, Hu ZP, et al. Bone marrow angiogenesis in patients presenting with differential Chinese medicine syndrome: correlation with the clinicopathological features of aplastic anemia[J]. Chin J Integr Med, 2013, 19 (12): 905-912.
[13]
Zhang Y, Zhao H, Zhao D, et al. SDF-1/CXCR4 axis in myelodysplastic syndromes: Correlation with angiogenesis and apoptosis[J]. Leuk Res, 2012, 36 (3): 281-286.
[14]
Chunkang C, Rui Y, Feng X, et al. The roles of SDF-1/CXCR4 axis and its relationship with apoptosis in the myelodysplastic syndromes[J]. Med Oncol, 2011 (28 Suppl 1): S494-S500.
[15]
Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer[J]. Clin Cancer Res, 2010, 16 (11): 2927-2931.
[16]
Jeng KS, Jeng CJ, Jeng WJ, et al. Role of C-X-C chemokine ligand 12/C-X-C chemokine receptor 4 in the progression of hepatocellular carcinoma[J]. Oncol Lett, 2017, 14 (2): 1905-1910.
[17]
Cheng Y, Qu J, Che X, et al. CXCL12/SDF-1α induces migration via SRC-mediated CXCR4-EGFR cross-talk in gastric cancercells[J]. Oncol Lett, 2017, 14 (2): 2103-2110.
[18]
Liang Z, Brooks J, Willard M, et al. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway[J]. Biochem Biophys Res Commun, 2007, 359 (3): 716-722.
[19]
Zhuo W, Jia L, Song N, et al. The CXCL12-CXCR4 chemokine pathway: a novel axis regulates lymphangiogenesis[J]. Clin Cancer Res, 2012, 18 (19): 5387-5398.
[20]
Oswald J, Boxberger S, Jorgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro[J]. Stem Cells, 2004, 22 (3): 377-384.
[21]
Shirzeyli MH, Khanlarkhani N, Amidi F, et al. Bones Morphogenic Protein-4 and retinoic acid combined treatment comparative analysis for in vitro differentiation potential of murine mesenchymal stem cells derived from bone marrow and adipose tissue into germ cells[J]. Microsc Res Tech, 2017, 80 (11): 1151-1160.
[1] 陈帅, 刘文宾, 吴迪炯, 俞庆宏, 陈均法, 庄海峰, 胡致平, 武利强, 郑智茵, 沈建平, 叶宝东. 改良FAC预处理方案在不同供者类型行异基因造血干细胞移植治疗再生障碍性贫血中的疗效分析[J]. 中华危重症医学杂志(电子版), 2022, 15(04): 296-299.
[2] 乔莉, 赵超, 孙昊, 陈洁, 王军, 张劲松. 参附注射液对脂多糖所致肺泡细胞损伤的保护作用[J]. 中华危重症医学杂志(电子版), 2021, 14(05): 362-367.
[3] 周伟, 蔡恒, 范海迪, 李惠中, 王传霞, 顾茂胜. cblC型甲基丙二酸血症MMACHC基因新突变对小鼠神经细胞凋亡及Wnt/β-catenin信号通路的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 528-539.
[4] 刘甜甜, 李明, 朱含汀, 倪涛, 彭银波, 方勇. 创缘铁过载的临床样本验证与铁过载对小鼠创面愈合的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 475-481.
[5] 张星哲, 郑秉暄, 邓格, 豆猛, 石玉婷, 卫田, 郭映聪, 韩锋, 赵艳龙, 丁晨光, 田普训. 髓源性抑制细胞通过抑制炎症反应减轻小鼠肾脏缺血再灌注损伤[J]. 中华移植杂志(电子版), 2023, 17(01): 42-46.
[6] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[7] 熊培尧, 唐雨豪, 杨子良, 朱应钦, 王骏成, 徐立. 小鼠VETC(+)肝癌模型构建及索拉非尼对VETC结构的影响[J]. 中华肝脏外科手术学电子杂志, 2022, 11(03): 315-319.
[8] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[9] 李铎, 黄梦杰, 陈尚, 李宗金, 陈健文, 陈香美. 小鼠肾脏包膜下移植间充质干细胞方法探索[J]. 中华肾病研究电子杂志, 2021, 10(06): 323-327.
[10] 白静怡, 黄轩, 张益权, 田颖, 陶勇. 小鼠干眼模型构建及其角膜特征检测的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 12-17.
[11] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[12] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[13] 梁伟, 王晓彬, 洪笑阳, 蔡明岳, 梁礼聪, 陈烨, 黄培凯, 刘铭宇, 林立腾, 朱康顺. 原位肝癌小鼠微波消融术后复发模型的构建[J]. 中华介入放射学电子杂志, 2023, 11(02): 133-139.
[14] 买买提·依斯热依力, 王永康, 吾布力卡斯木·吾拉木, 阿巴伯克力·乌斯曼, 克力木·阿不都热依木. 基于16s rRNA测序分析心理应激小鼠肠道菌群结构特征[J]. 中华胃食管反流病电子杂志, 2022, 09(04): 181-186.
[15] 买买提·依斯热依力, 王永康, 阿巴伯克力·乌斯曼, 克力木·阿不都热依木. 基于16s rRNA测序分析小鼠高脂饮食诱导肥胖的肠道菌群结构特征[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 12-16.
阅读次数
全文


摘要