切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2018, Vol. 11 ›› Issue (01) : 22 -28. doi: 10.3877/cma.j.issn.1674-6880.2018.01.004

所属专题: 文献

论著

微小RNA-320检测在体外循环所致急性呼吸窘迫综合征中的临床价值及其机制研究
施凯1,(), 刘景全2, 冯月娟1, 洪军2, 沈业周3   
  1. 1. 310011 杭州,杭州师范大学附属医院呼吸科
    2. 310014 杭州,浙江省人民医院重症医学科
    3. 310011 杭州,杭州师范大学附属医院重症医学科
  • 收稿日期:2017-01-03 出版日期:2018-02-01
  • 通信作者: 施凯
  • 基金资助:
    浙江省自然科学基金项目(LY14H150005)

Clinical value and mechanism research of microRNA-320 in acute respiratory distress syndrome after cardiopulmonary bypass

Kai Shi1,(), Jingquan Liu2, Yuejuan Feng1, Jun Hong2, Yezhou Sheng3   

  1. 1. Department of Respiratory Medicine, the Affiliated Hospital of Hangzhou Normal University (the 2nd People's Hospital of Hangzhou), Hangzhou310011, China
    2. Intensive Care Unit, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
    3. Intensive Care Unit, the Affiliated Hospital of Hangzhou Normal University (the 2nd People's Hospital of Hangzhou), Hangzhou310011, China
  • Received:2017-01-03 Published:2018-02-01
  • Corresponding author: Kai Shi
  • About author:
    Correspondence author: Shi Kai, Email:
引用本文:

施凯, 刘景全, 冯月娟, 洪军, 沈业周. 微小RNA-320检测在体外循环所致急性呼吸窘迫综合征中的临床价值及其机制研究[J]. 中华危重症医学杂志(电子版), 2018, 11(01): 22-28.

Kai Shi, Jingquan Liu, Yuejuan Feng, Jun Hong, Yezhou Sheng. Clinical value and mechanism research of microRNA-320 in acute respiratory distress syndrome after cardiopulmonary bypass[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2018, 11(01): 22-28.

目的

研究微小RNA(microRNA)在体外循环(CPB)诱导的急性呼吸窘迫综合征(ARDS)患者中表达,并初步探讨其机制。

方法

设定体外循环转流开始前(T1)、转流结束后4 h(T2)、术后8 h(T3)、术后16 h(T4)等4个时间点,采用microRNA微阵列芯片分析32例因CPB诱发ARDS患者microRNA变化,并通过实时荧光定量PCR(qRT-PCR)技术加以验证。酶联免疫分析法检测患者肿瘤坏死因子α(TNF-α)、白细胞介素6(IL-6)在T1~T4等4个时间点的水平变化,同时计算呼吸指数和氧合指数。Pearson相关性分析研究microRNA-320(miR-320)与TNF-α、IL-6、呼吸指数、氧合指数、Murray急性肺损伤评分以及急性病生理学和长期健康评价(APACHE)Ⅱ评分的相关性。体外培养人肺腺癌A549细胞,并转染pcDNA3.1-miR-320,采用细胞增殖检测试剂盒8(CCK-8)法和流式细胞术分析pcDNA3.1-miR-320转染对A549细胞48 h存活和凋亡率的影响。

结果

在T1与T4时间点,ARDS患者血液标本中共有8个microRNA表达差异有统计学意义(t=28.313、30.014、25.313、20.312、29.442、21.443、18.427、22.369,P均< 0.001),其中5个出现降低,3个出现增高,其中miR-499的降低程度(0.28 ± 0.09)最为显著,而miR-320的增高程度(1.62 ± 0.12)最为显著(P均< 0.05)。qRT-PCR证实从T1至T4时间点,miR-320相对表达水平(1.00、1.14 ± 0.07、1.34 ± 0.06、1.71 ± 0.08)逐渐升高,差异有统计学意义(F=20.648,P < 0.05)。CPB诱发ARDS的患者T1与T4时间点相比,TNF-α[(110 ± 10)ng/L vs.(254 ± 16)ng/L]、IL-6[(86 ± 8)ng/L vs.(165 ± 11)ng/L]、呼吸指数[(0.182 ± 0.021)vs.(0.381 ± 0.032)]均增高,氧合指数[(350 ± 22)vs.(245 ± 18)]下降,差异均有统计学意义(P均< 0.05)。Pearson相关性分析发现,miR-320的表达水平与Murray急性肺损伤评分,APACHEⅡ评分,T4时间点TNF-α、IL-6、呼吸指数均呈正相关(r=0.685、0.744、0.737、0.711、0.846,P均< 0.05),而与氧合指数呈负相关(r=-0.745,P < 0.05)。pcDNA3.1-miR-320转染的A549细胞组与对照组48 h细胞存活率[(82% ± 8%)vs. 100%]、凋亡率[(20.0% ± 1.1%)vs.(9.4% ± 0.8%)]相比,差异均具有统计学意义(P均< 0.05)。

结论

miR-320水平与TNF-α、IL-6等肺部损伤指标具有相关性,miR-320的高表达可能介导CPB导致的ARDS,作用机制为诱导肺泡上皮细胞的凋亡,因此miR-320具有临床诊断、评估ARDS生物学指标的潜能。

Objective

To investigate the expression of microRNA in the patients with acute respiratory distress syndrome (ARDS) caused by cardiopulmonary bybass (CPB), and primarily explore the possible mechanism.

Methods

Four time points were set up: the beginning of CPB operation (T1), 4 h after the start of operation (T2), 8 h after operation (T3), and 16 h after operation (T4). MicroRNA microarray was used to analyze the expression of microRNAs in 32 patients with ARDS induced by CPB. Quantitative real time polymerase chain reaction (qRT-PCR) was performed to verify the expression of microRNAs. Enzyme linked immunosorbent assay detected tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) levels of patients in T1-T4 time points. Respiratory index and oxygenation index were also calculated. Pearson correlation analysis investigated the correlation between microRNA-320 (miR-320) expression and TNF-α, IL-6, respiratory index, oxygenation index, Murray acute lung injury score and acute physiology and chronic health evaluation (APACHE) Ⅱ score. Furthermore, human lung adenocarcinoma A549 cells were in vitro cultured, and then pcDNA3.1-miR-320 was transfected into cells; CCK-8 kits and flow cytometry were used to determine the survival and apoptosis rates of A549 cell at 48 h after transfection.

Results

In patients with ARDS induced by CPB, expressions of eight microRNAs were changed significantly at T1 and T4 time points(t=28.313, 30.014, 25.313, 20.312, 29.442, 21.443, 18.427, 22.369; all P < 0.001); five increased and three decreased. The decrease level of miR-499 (0.28 + 0.09) and increase level of miR-320 (1.62 + 0.12) both changed significantly (all P < 0.05). qRT-PCR found that only the relative expression levels of miR-320 (1.00, 1.14 + 0.07, 1.34 + 0.06, 1.71 + 0.08) gradually increased from T1 to T4 time points, and the difference was statistically significant (F=20.648, P < 0.05). In these CPB induced ARDS patients, TNF-α level [(110 ± 10) ng/L vs. (254 ± 16) ng/L], IL-6 level [(86 ± 8) ng/L vs. (165 ± 11) ng/L], respiratory index [(0.182 ± 0.021) vs. (0.381 ± 0.032)] all dramatically increased, while oxygenation index [(350 ± 22) vs. (245 ± 18)] declined when comparing T1 and T4 time points (all P < 0.05). Pearson correlation analysis found the expression of miR-320 was positively correlated with Murray acute lung injury score, APACHEⅡscore, and TNF-α level, IL-6 level, respiratory index in T4 time point (r=0.685, 0.744, 0.737, 0.711, 0.846; all P < 0.05), and negatively correlated with oxygenation index (r=-0.745, P < 0.05). Moreover, the survival [(82% ± 8%) vs. 100%] and apoptosis [(20.0% ± 1.1%) vs. (9.4% ± 0.8%)] rates after 48 h transfection between the pcDNA3.1-miR-320 transfected A549 cell group and control group were remarkably different (both P < 0.05).

Conclusions

MiR-320 expression is correlated with the lung injury indicators such as TNF-α and IL-6, and its high expression may mediate ARDS caused by CPB. The mechanism is to induce apoptosis of alveolar epithelial cells. Thus, miR-320 detection has clinical value for diagnosis and assessment of ARDS.

表1 CPB后发生ARDS患者微小RNA不同时间点表达水平的比较(±s
表2 CPB后发生ARDS的患者肺部损伤和呼吸指标的比较(±s
[1]
Baysal A, Sasmazel A, Yildirim A, et al. The predic-tive value of plasma B-type natriuretic peptide levels on outcome in children with pulmonary hypertension undergoing congenital heart surgery[J]. Braz J Anesthesiol, 2014, 64 (5): 326-334.
[2]
李慧,章渭方.心脏术后急性肾损伤的预测指标及预防策略[J/CD].中华危重症医学杂志(电子版),2012,5(3):145-150.
[3]
徐先增,周婷,谢晓勇,等.单纯瓣膜置换术后高胆红素血症的危险因素分析及临床预后[J/CD].中华危重症医学杂志(电子版),2015,8(60):356-360.
[4]
Chen MF, Chen LW, Cao H. Analysis of risk factors for and the prognosis of postoperative acute respiratory distress syndrome in patients with Stanford type A aortic dissection[J]. J Thorac Dis, 2016, 8 (10): 2862-2871.
[5]
Zakkar M, Guida G, Suleiman MS, et al. Cardiopul-monary bypass and oxidative stress[J]. Oxid Med Cell Longev, 2015 (2015): 189863.
[6]
Chen S, Hua F, Lu J, et al. Effect of dexmedeto-midine on myocardial ischemia-reperfusion injury[J]. Int J Clin Exp Med, 2015, 8 (11): 21166-21172.
[7]
Liu S, Tang J, Huang L, et al. Cordyceps militaris alleviates severity of murine acute lung injury through miRNAs-mediated CXCR2 inhibition[J]. Cell Physiol Biochem, 2015, 36 (5): 2003-2011.
[8]
Tacutu R, Budovsky A, Wolfson M, et al. MicroRNA-regulated protein-protein interaction networks: how could they help in searching for pro-longevity targets?[J]. Rejuvenation Res, 2010, 13 (2-3): 373-377.
[9]
Oliynyk OV, Pereviznyk BO, Yemiashev OV, et al. T-he effectiveness of corticosteroid usage in complex therapy for severe sepsis and acute respiratory distress syndrome in cases of severe traumatic brain injury[J]. Adv Clin Exp Med, 2016, 25 (6): 1223-1226.
[10]
Hajjar LA, Almeida JP, Fukushima JT, et al. High lactate levels are predictors of major complications after cardiac surgery[J]. J Thorac Cardiovasc Surg, 2013, 146 (2): 455-460.
[11]
Wacharasint P, Nakada TA, Boyd JH, et al. AA genotype of IL-8-251A/T is associated with low PaO (2)/FiO (2) in critically ill patients and with increased IL-8 expression[J]. Respirology, 2012, 17 (8): 1253-1260.
[12]
Hagawane TN, Gaikwad RV, Kshirsagar NA, et al. Dual hit lipopolysaccharide & oleic acid combination induced rat model of acute lung injury/acute respiratory distress syndrome[J]. Indian J Med Res, 2016, 143 (5): 624-632.
[13]
Brown JN, Brewer HM, Nicora CD, et al. Protein and microRNA biomarkers from lavage, urine, and serum in military personnel evaluated for dyspnea[J]. BMC Med Genomics, 2014, 7 (1): 58.
[14]
Li W, Qiu X, Jiang H, et al. Downregulation of miR-181a protects mice from LPS-induced acute lung injury by targeting Bcl-2[J]. Biomed Pharmacother, 2016 (84): 1375-1382.
[15]
Adyshev DM, Elangovan VR, Moldobaeva N, et al. Mechanical stress induces pre-B-cell colony-enhancing factor/NAMPT expression via epigenetic regulation by miR-374a and miR-568 in human lung endothelium[J]. Am J Respir Cell Mol Biol, 2014, 50 (2): 409-418.
[16]
Zhou X, Mao A, Wang X, et al. Urine and serum microRNA-1 as novel biomarkers for myocardial injury in open-heart surgeries with cardiopulmonary bypass[J]. PLoS One, 2013, 8 (4): e62245.
[17]
Ren XP, Wu J, Wang X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20[J]. Circulation, 2009, 119 (17): 2357-2366.
[18]
Varga ZV, Zvara A, Farago N, et al. MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre- and postconditioning: protectomiRs[J]. Am J Physiol Heart Circ Physiol, 2014, 307 (2): H216-H227.
[1] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 王玲燕, 邹磊, 洪亮, 宋三兵, 付润, 熊胜男, 宋晓春. 心脏外科术后患者并发低三碘甲状腺原氨酸综合征的影响因素分析[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 399-402.
[4] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[5] 周东杰, 蒋敏, 范海瑞, 高玲玲, 孔祥, 卢丹, 王丽萍. 非编码RNA在卵泡发育成熟中作用及其机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 387-393.
[6] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[7] 李国良, 吴凡, 李浩民, 江俊斌, 郭泽雄, 卓育敏, 马鑫, 赖彩永. 抽栓技术在完全腹腔镜左肾癌合并Ⅳ级腔静脉癌栓取出术的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 403-406.
[8] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[9] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[10] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[11] 张松涛, 李世金, 凌霄, 吴文辉. 胸部物理治疗联合布地奈德雾化对多发伤患者并发ARDS的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 373-375.
[12] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[13] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[14] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要