切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2017, Vol. 10 ›› Issue (05) : 289 -295. doi: 10.3877/cma.j.issn.1674-6880.2017.05.001

所属专题: 文献

论著

益生菌制剂对脓毒症小鼠生存情况的影响及机制研究
李晗宇1, 陈路芳1, 李金优1, 杨云梅1,()   
  1. 1. 310003 杭州,浙江大学医学院附属第一医院老年病科
  • 收稿日期:2017-07-26 出版日期:2017-10-01
  • 通信作者: 杨云梅
  • 基金资助:
    973项目子课题(2013CB531402); 国家临床重点专科建设项目(国卫办医函[2013]544号)

Effects of probiotics on the survival of sepsis mice and their mechanism

Hanyu Li1, Lufang Chen1, Jinyou Li1, Yunmei Yang1,()   

  1. 1. Department of Geriatrics, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
  • Received:2017-07-26 Published:2017-10-01
  • Corresponding author: Yunmei Yang
  • About author:
    Corresponding author: Yang Yunmei, Email:
引用本文:

李晗宇, 陈路芳, 李金优, 杨云梅. 益生菌制剂对脓毒症小鼠生存情况的影响及机制研究[J]. 中华危重症医学杂志(电子版), 2017, 10(05): 289-295.

Hanyu Li, Lufang Chen, Jinyou Li, Yunmei Yang. Effects of probiotics on the survival of sepsis mice and their mechanism[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2017, 10(05): 289-295.

目的

探讨益生菌制剂对脓毒症小鼠生存情况的影响及作用机制。

方法

60只雄性C57BL6小鼠随机分为三组,分别为假手术组(20只)、对照组(20只)和实验组(20只)。在饲养2 d后,实验组小鼠每天给予200 μL的益生菌制剂,对照组和假手术组小鼠每天给予200 μL等渗NaCl溶液,连续灌胃4周。分别对实验组小鼠与对照组小鼠进行盲肠结扎穿孔术(CLP),而假手术组小鼠不予盲肠穿刺,其余步骤同CLP。每组10只用于观察小鼠活动状态及7 d存活情况;每组剩余10只,术后24 h取血液、结肠组织。采用酶联免疫吸附实验法检测各组小鼠血清中炎症因子白细胞介素22(IL-22)、IL-2及肿瘤坏死因子α(TNF-α)的表达水平,苏木素-伊红(HE)染色法观察各组小鼠结肠组织形态,免疫组织化学法观察各组小鼠肠黏膜抗紧密连接相关蛋白(Occludin)表达。

结果

假手术组小鼠生长状态良好;对照组小鼠则蜷缩在笼角,浑身战栗;实验组小鼠较对照组活跃,活动较多,未见明显战栗。术后第7天,对照组无小鼠存活,实验组小鼠仍有3只存活,予安乐死,其7 d存活情况显著高于对照组小鼠(P = 0.020);而假手术组小鼠10只均存活,予安乐死。对照组与假手术组比较,小鼠血清IL-22 [(103 ± 23)ng/L vs.(27 ± 9)ng/L,t = 7.590,P < 0.001]、IL-2[(328 ± 27)ng/L vs.(77 ± 21)ng/L,t = 21.368,P < 0.001]及TNF-α[(94 ± 22)ng/L vs.(56 ± 9)ng/L,t = 4.734,P < 0.001]表达水平比较,差异均有统计学意义;实验组与假手术组小鼠血清IL-22[(75 ± 33)ng/L vs.(27 ± 9)ng/L,t = 3.755,P = 0.001]、IL-2[(217 ± 30)ng/L vs.(77 ± 21)ng/L,t = 10.850,P < 0.001]及TNF-α[(107 ± 20)ng/L vs.(56 ± 9)ng/L,t = 5.956,P < 0.001]表达水平比较,差异亦均有统计学意义;与对照组相比,实验组小鼠血清IL-22[(103 ± 23)ng/L vs.(75 ± 33)ng/L,t = 2.185,P = 0.042]及IL-2 [(328 ± 27)ng/L vs.(217 ± 30)ng/L,t = 8.371,P < 0.001]表达水平差异均有统计学意义,而TNF-α[(94 ± 22)ng/L vs.(107 ± 20)ng/L,t = 1.363,P = 0.188]表达水平比较,差异无统计学意义。假手术组小鼠的结肠黏膜上皮完整,腺体排列规则,少许或无炎症细胞浸润;对照组小鼠则出现结肠黏膜上皮腺体排列紊乱、变形、缺失,肠上皮细胞间紧密连接结构模糊,以及炎症细胞广泛浸润现象,有些伴有隐窝脓肿形成;而实验组小鼠结肠上皮基本完整,未有糜烂缺失,腺体排列基本正常,炎症细胞浸润程度也较对照组小鼠有所减轻。免疫组织化学法检测结果显示,假手术组小鼠结肠上皮细胞腺泡结构完整,Occludin蛋白表达较多;对照组小鼠结肠上皮细胞腺泡结构破坏、消失,炎症细胞浸润,Occludin蛋白表达较少;实验组小鼠结肠上皮细胞腺泡结构尚完整,腺泡间间隙增宽,Occludin蛋白表达较对照组有所增加。

结论

益生菌可通过抑制肠上皮细胞间紧密连接相关蛋白的减少,稳定肠道黏膜屏障结构,有效提高脓毒症小鼠的存活情况。

Objective

To investigate the effects of probiotics on the survival of sepsis mice and their mechanism.

Methods

A total of 60 male C57BL6 mice were randomly divided into 3 groups, respectively, the sham operation group (n = 20), the control group (n = 20) and the experimental group (n = 20). After feeding 2 d, mice in the experimental group were given 200 μL probiotics solution daily; mice in the control and sham operation groups were given 200 μL NaCl solution, with continuous intragastric administration for 4 weeks. Cecal ligation and puncture (CLP) was performed on the mice in the experimental and control groups, while mice in the sham operation group were performed with the same procedures of CLP except for cecal puncture. Ten mice in each group were used to observe their activity and survival of 7 d, and the blood and colon tissues were taken in the other 10 mice in each group after 24 hours. The expression levels of serum inflammatory factor interleukin 22 (IL-22), IL-2 and tumor necrosis factor alpha (TNF-α) were detected by enzyme-linked immunosorbent assay, the colon tissues were measured by the hematoxylin and eosin (HE) staining method, and the expression of colonic mucosa (Occludin) in each group was observed by the immunohistochemical method.

Results

Mice in the sham operation group grew well, mice in the control group curled up in a corner of the cage and trembled, and mice in the experimental group were more active than the experimental group, without obvious tremor. At 7 d, there were still 3 survived mice in the experimental group which were given euthanasia; the 7 d survival was significantly higher than that of the control group (P = 0.020). At 7 d, 10 mice in the sham operation group all survived and were given euthanasia. The expressions of serum IL-22 [(103 ± 23) ng/L vs. (27 ± 9) ng/L, t = 7.590, P < 0.001], IL-2 [(328 ± 27) ng/L vs. (77 ± 21) ng/L, t = 21.368, P < 0.001] and TNF-α [(94 ± 22) ng/L vs. (56 ± 9) ng/L, t = 4.734, P < 0.001] in the control group were significantly different as compared to the sham operation group. Meanwhile, the expressions of serum IL-22 [(75 ± 33) ng/L vs. (27 ± 9) ng/L, t = 3.755, P = 0.001], IL-2 [(217 ± 30) ng/L vs. (77 ± 21) ng/L, t = 10.850, P < 0.001] and TNF-α [(107 ± 20) ng/L vs. (56 ± 9) ng/L, t = 5.956, P < 0.001] in the experimental and sham operation groups all showed statistically significant differences. Compared with the control group, the expressions of serum IL-22 [(103 ± 23) ng/L vs. (75 ± 33) ng/L, t = 2.185, P = 0.042] and IL-2 [(328 ± 27) ng/L vs. (217 ± 30) ng/L, t = 8.371, P < 0.001] in the experimental group were significantly different, while the TNF-α [(94 ± 22) ng/L vs. (107 ± 20) ng/L, t = 1.363, P = 0.188] expression showed no statistically significant difference. In the sham operation group, the colonic mucosa was intact and the glands were regularly arranged with little or no inflammatory cell infiltration. However, mice in the control group appeared derangement, deformation and lack of colonic mucosal epithelial glands, fuzzy connected structures of enterocytes, and extensive infiltration of inflammatory cells some of which had crypt abscess. The colonic epithelia of mice in the experimental group were basically complete without erosion and loss, glands were normally arranged, and the infiltration of inflammatory cells decreased more as compared to the control group. The results of immunohistochemistry showed that mice in the sham operation group had complete acinar structures of colonic epithelial cells and more Occludin proteins. The acinar structures of colonic epithelial cells in the control group were destructed and disappeared, and there were infiltration of inflammatory cells and less Occludin proteins. The acinar structures of colonic epithelial cells in the experimental group were complete with widened interacinar gaps, and the expression of Occludin protein increased as compared to the control group.

Conclusion

Probiotics can inhibit the reduction of Occludin of intestinal epithelial cells and stabilize barrier structures of intestinal mucosas, thus effectively improving the survival of septic mice.

表1 各组小鼠血清炎症因子水平(ng/L, ± s
图1 各组小鼠肠黏膜损伤情况。注:a、d图为假手术组小鼠,显示结肠黏膜上皮完整,腺体排列规则,少许或无炎症细胞浸润;b、e图为对照组小鼠,显示结肠黏膜上皮腺体排列紊乱、变形、缺失,肠上皮细胞间紧密连接结构模糊,炎症细胞广泛浸润,可见隐窝脓肿形成;c、f图为实验组小鼠,显示结肠上皮基本完整,未有糜烂缺失,腺体排列基本正常,炎症细胞浸润程较少(a、b、c图:HE染色× 50,d、e、f图:HE染色 ×100)
图2 各组小鼠肠黏膜紧密连接蛋白Occludin的表达情况。注:a图为假手术组小鼠,可见腺泡结构完整,棕黄染色的Occludin蛋白表达较多;b图为对照组小鼠,腺泡结构破坏、消失,炎症细胞浸润,棕黄染色的Occludin蛋白较少;c图为实验组小鼠,腺泡结构尚完整,腺泡间间隙增宽,棕黄染色的Occludin蛋白含量尚可(HE染色 ×400)。
1
Angus DC, van der Poll T. Severe sepsis and septic shock[J]. N Engl J Med, 2013, 369 (9): 840-851.
2
Song T, Yin H, Chen J, et al. Survival advantage depends on cecal volume rather than cecal length in a mouse model of cecal ligation and puncture[J]. J Surg Res, 2016, 203 (2): 476-482.
3
Torpy JM, Lynm C, Glass RM. JAMA patient page. Intensive care units[J]. JAMA, 2009, 301 (12): 1304.
4
Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care[J]. Crit Care Med, 2001, 29 (7): 1303-1310.
5
Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study[J]. Crit Care Med, 2006, 34 (2): 344-353.
6
Esper AM, Moss M, Lewis CA, et al. The role of infection and comorbidity: factors that influence disparities in sepsis[J]. Crit Care Med, 2006, 34 (10): 2576-2582.
7
Cavaillon JM, Adib-Conquy M, Fitting C, et al. Cytokine cascade in sepsis[J]. Scand J Infect Dis, 2003, 35 (9): 535-544.
8
Iskander KN, Osuchowski MF, Stearns-Kurosawa DJ, et al. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding[J]. Physiol Rev, 2013, 93 (3): 1247-1288.
9
Zhou J, Qian C, Zhao M, et al. Epidemiology and outcome of severe sepsis and septic shock in intensive care units in mainland China[J]. PloS One, 2014, 9 (9): e107181.
10
Gaieski DF, Edwards JM, Kallan MJ, et al. Benchmarking the incidence and mortality of severe sepsis in the United States[J]. Crit Care Med, 2013, 41 (5): 1167-1174.
11
Clark JA, Coopersmith CM. Intestinal crosstalk: a new paradigm for understanding the gut as the "motor" of critical illness[J]. Shock, 2007, 28 (4): 384-393.
12
Dominguez JA, Coopersmith CM. Can we protect the gut in critical illness? The role of growth factors and other novel approaches[J]. Crit Care Clin, 2010, 26 (3): 549-565, x.
13
Hassoun HT, Kone BC, Mercer DW, et al. Post-injury multiple organ failure: the role of the gut[J]. Shock, 2001, 15 (1): 1-10.
14
Sartor RB. Probiotic therapy of intestinal inflammation and infections[J]. Curr Opin Gastroenterol, 2005, 21 (1): 44-50.
15
Weber GF, Schlautkotter S, Kaiser-Moore S, et al. Inhibition of interleukin-22 attenuates bacterial load and organ failure during acute polymicrobial sepsis[J]. Infect Immun, 2007, 75 (4): 1690-1697.
16
Rittirsch D, Huber-Lang MS, Flierl MA, et al. Immunodesign of experimental sepsis by cecal ligation and puncture[J]. Nat Protoc, 2009, 4 (1): 31-36.
17
Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000[J]. N Engl J Med, 2003, 348 (16): 1546-1554.
18
Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis[J]. Virulence, 2014, 5 (1): 4-11.
19
归崎峰,杨云梅,张家嘉. 他汀类药物对中国老年脓毒症患者住院期间病死率的影响[J/CD]. 中华危重症医学杂志(电子版),2016,9(1):34-37.
20
Vincent JL, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units[J]. JAMA, 2009, 302 (21): 2323-2329.
21
MacFie J. Current status of bacterial translocation as a cause of surgical sepsis[J]. Brit Med Bull, 2004 (71): 1-11.
22
Power SE, O'Toole PW, Stanton C, et al. Intestinal microbiota, diet and health[J]. Br J Nutr, 2014, 111 (3): 387-402.
23
Schroder J, Wardelmann E, Winkler W, et al. Glutamine dipeptide-supplemented parenteral-nutrition reverses gut atrophy, disaccharidase enzyme-activity, and absorption in rats[J]. JPEN J Parenter Enteral Nutr, 1995, 19 (6): 502-506.
24
Roland CR, Goss JA, Mangino MJ, et al. Autoregulation by eicosanoids of human kupffer cell secretory products - a study of interleukin-1, interleukin-6, tumor-necrosis-factor-alpha, transforming growth-factor-beta, and nitric-oxide[J]. Ann Surg, 1994, 219 (4): 389-399.
25
Ford AC, Quigley EM, Lacy BE, et al. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis[J]. Am J Gastroenterol, 2014, 109 (10): 1547-1561.
26
Shen J, Zuo ZX, Mao AP. Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, crohn's disease, and pouchitis: meta-analysis of randomized controlled trials[J]. Inflamm Bowel Dis, 2014, 20 (1): 21-35.
27
Deshpande G, Rao S, Patole S, et al. Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates[J]. Pediatrics, 2010, 125 (5): 921-930.
28
Parkes GC, Sanderson JD, Whelan K. The mechanisms and efficacy of probiotics in the prevention of clostridium difficile-associated diarrhoea[J]. Lancet Infect Dis, 2009, 9 (4): 237-244.
29
Guarino A, Guandalini S, Lo Vecchio A. Probiotics for prevention and treatment of diarrhea[J]. J Clin Gastroenterol, 2015, 49 Suppl 1: S37-S45.
30
曹超,柴艳芬,寿松涛,等. 乌司他丁对脓毒症小鼠调节性T细胞凋亡及细胞因子分泌的影响[J/CD]. 中华危重症医学杂志(电子版),2017,10(3):149-152.
31
Mennigen R, Nolte K, Rijcken E, et al. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296 (5): G1140-G1149.
32
Lichtman SM. Bacterial [correction of baterial] translocation in humans[J]. J Pediatr Gastroenterol Nutr, 2001, 33 (1): 1-10.
[1] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[2] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[3] 陈宇, 冯芳, 张露, 刘健. 基于生物信息学分析筛选脓毒症心肌病关键致病基因[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 286-291.
[4] 作者. 脓毒症与脓毒性休克[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 0-.
[5] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[6] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[7] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[8] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[9] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[10] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[11] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[12] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[13] 李世明, 黄蔚, 刘玲. HMGB1介导脓毒症相关凝血功能障碍的作用机制及其治疗进展[J]. 中华重症医学电子杂志, 2023, 09(03): 269-273.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要