1 |
Perner A, Gordon AC, De Backer D, et al. Sepsis: frontiers in diagnosis, resuscitation and antibiotic therapy[J]. Intensive Care Med, 2016, 42 (12): 1958-1969.
|
2 |
Joffre J, Hellman J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation[J]. Antioxid Redox Signal, 2021, 35 (15): 1291-1307.
|
3 |
Lelubre C, Vincent JL. Mechanisms and treatment of organ failure in sepsis[J]. Nat Rev Nephrol, 2018, 14 (7): 417-427.
|
4 |
Strnad P, Tacke F, Koch A, et al. Liver — guardian, modifier and target of sepsis: 1[J]. Nat Rev Gastroenterol Hepatol, 2017, 14 (1): 55-66.
|
5 |
Sun YY, Li XF, Meng XM, et al. Macrophage phenotype in liver injury and repair[J]. Scand J Immunol, 2017, 85 (3): 166-174.
|
6 |
Chen Y, Yang L, Li X. Advances in mesenchymal stem cells regulating macrophage polarization and treatment of sepsis-induced liver injury[J]. Front Immunol, 2023 (14): 1238972.
|
7 |
Zhang X, Liu H, Hashimoto K, et al. The gut-liver axis in sepsis: interaction mechanisms and therapeutic potential[J]. Crit Care, 2022, 26 (1): 213.
|
8 |
Sun J, Zhang J, Wang X, et al. Gut-liver crosstalk in sepsis-induced liver injury[J]. Crit Care, 2020, 24 (1): 614.
|
9 |
Ott SJ, Waetzig GH, Rehman A, et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection[J]. Gastroenterology, 2017, 152 (4): 799-811.e7.
|
10 |
Zheng Y, Yue C, Zhang H, et al. Deoxycholic acid and lithocholic acid alleviate liver injury and inflammation in mice with Klebsiella pneumoniae-induced liver abscess and bacteremia[J]. J Inflamm Res, 2021 (14): 777-789.
|
11 |
Collins SL, Stine JG, Bisanz JE, et al. Bile acids and the gut microbiota: metabolic interactions and impacts on disease[J]. Nat Rev Microbiol, 2023, 21 (4): 236-247.
|
12 |
He Z, Ma Y, Yang S, et al. Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection[J]. Microbiome, 2022, 10 (1): 79.
|
13 |
Leduc-Gaudet JP, Miguez K, Cefis M, et al. Autophagy ablation in skeletal muscles worsens sepsis-induced muscle wasting, impairs whole-body metabolism, and decreases survival[J]. iScience, 2023, 26 (8): 107475.
|
14 |
隆毅,吴桂新,陈梦婷,等.肠道微生态制剂在腹腔感染中的作用[J].中华消化外科杂志,2023,22(11)):1300-1305.
|
15 |
Cai J, Sun L, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis[J]. Cell Host Microbe, 2022, 30 (3): 289-300.
|
16 |
Noh DO, Gilliland SE. Influence of bile on cellular integrity and beta-galactosidase activity of Lactobacillus acidophilus[J]. J Dairy Sci, 1993, 76 (5): 1253-1259.
|
17 |
孟建标,张庚,焦燕娜.脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J/CD].中华危重症医学杂志(电子版),2023,16(4):279-285.
|
18 |
Long X, Mu S, Zhang J, et al. GLOBAL signatures of the microbiome and metabolome during hospitalization of septic patients[J]. Shock, 2023, 59 (5): 716-724.
|
19 |
Larabi AB, Masson HLP, Baumler AJ. Bile acids as modulators of gut microbiota composition and function[J]. Gut Microbes, 2023, 15 (1): 2172671.
|
20 |
Weingarden AR, Chen C, Bobr A, et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306 (4): G310-319.
|
21 |
Theriot CM, Bowman AA, Young VB. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine[J]. mSphere, 2016, 1 (1): e00045-15.
|
22 |
Palmieri LJ, Rainteau D, Sokol H, et al. Inhibitory effect of ursodeoxycholic acid on Clostridium difficile germination is insufficient to prevent colitis: a study in hamsters and humans[J]. Front Microbiol, 2018 (9): 2849.
|
23 |
Farowski F, Solbach P, Tsakmaklis A, et al. Potential biomarkers to predict outcome of faecal microbiota transfer for recurrent Clostridioides difficile infection[J]. Dig Liver Dis, 2019, 51 (7): 944-951.
|
24 |
Liu H, Kohmoto O, Sakaguchi A, et al. Taurocholic acid, a primary 12α-hydroxylated bile acid, induces leakiness in the distal small intestine in rats[J]. Food Chem Toxicol, 2022 (165): 113136.
|
25 |
Wang YD, Chen WD, Wang M, et al. Farnesoid x receptor antagonizes nuclear factor kappab in hepatic inflammatory response[J]. Hepatology, 2008, 48 (5): 1632-1643.
|
26 |
Wagner M, Zollner G, Trauner M. Nuclear bile acid receptor farnesoid x receptor meets nuclear factor-kappaB: new insights into hepatic inflammation[J]. Hepatology, 2008, 48 (5): 1383-1386.
|
27 |
Shao J, Ge T, Tang C, et al. Synergistic anti-inflammatory effect of gut microbiota and lithocholic acid on liver fibrosis[J]. Inflamm Res, 2022, 71 (10-11): 1389-1401.
|
28 |
Kang JW, Lee SM. Resolvin D1 protects the liver from ischemia/reperfusion injury by enhancing M2 macrophage polarization and efferocytosis[J]. Biochim Biophys Acta, 2016, 1861 (9 Pt A): 1025-1035.
|
29 |
Xie J, Wu X, Zhou Q, et al. PICK1 confers anti-inflammatory effects in acute liver injury via suppressing M1 macrophage polarization[J]. Biochimie, 2016 (127): 121-132.
|
30 |
Wammers M, Schupp AK, Bode JG, et al. Reprogramming of pro-inflammatory human macrophages to an anti-inflammatory phenotype by bile acids[J]. Sci Rep, 2018, 8 (1): 255.
|