1 |
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20 (10): 795-820.
|
2 |
中国中西医结合学会急救医学专业委员会.中国急性缺血性脑卒中中西医急诊诊治专家共识[J].中华危重病急救医学,2018,30(3):193-197.
|
3 |
Jovin TG, Li C, Wu L, et al. Trial of thrombectomy 6 to 24 hours after stroke due to basilar-artery occlusion[J]. N Engl J Med, 2022, 387 (15): 1373-1384.
|
4 |
Roaldsen MB, Jusufovic M, Berge E, et al. Endovascular thrombectomy and intra-arterial interventions for acute ischaemic stroke[J]. Cochrane Database Syst Rev, 2021, 6 (6): Cd007574.
|
5 |
Saini V, Guada L, Yavagal DR. Global epidemiology of stroke and access to acute ischemic stroke interventions[J]. Neurology, 2021, 97 (20 Suppl 2): S6-S16.
|
6 |
卢志刚,卢青,李钊硕. Nrf2信号通路在脑缺血/再灌注损伤神经保护机制中的研究进展[J].中华危重病急救医学,2022,34(3):325-328.
|
7 |
Kan X, Yan Z, Wang F, et al. Efficacy and safety of remote ischemic conditioning for acute ischemic stroke: a comprehensive meta-analysis from randomized controlled trials[J]. CNS Neurosci Ther, 2023, 29 (9): 2445-2456.
|
8 |
林羽佳,宋斌,林庆明,等.自噬在缓激肽后处理心肺复苏大鼠神经保护中的作用机制[J].中华危重病急救医学,2021,33(9):1099-1104.
|
9 |
Denton D, Kumar S. Autophagy-dependent cell death[J]. Cell Death Differ, 2019, 26 (4): 605-616.
|
10 |
Wang J, Han D, Sun M, et al. Cerebral ischemic post-conditioning induces autophagy inhibition and a HMGB1 secretion attenuation feedback loop to protect against ischemia reperfusion injury in an oxygen glucose deprivation cellular model[J]. Mol Med Rep, 2016, 14 (5): 4162-4172.
|
11 |
Qi ZF, Luo YM, Liu XR, et al. AKT/GSK3β-dependent autophagy contributes to the neuroprotection of limb remote ischemic postconditioning in the transient cerebral ischemic rat model[J]. CNS Neurosci Ther, 2012, 18 (12): 965-973.
|
12 |
Medina DL. TRPML1 and TFEB, an intimate affair[J]. Handb Exp Pharmacol, 2023 (278): 109-126.
|
13 |
Wang Y, Jiang SW, Liu X, et al. Degradation of TRPML1 in neurons reduces neuron survival in transient global cerebral ischemia[J]. Oxid Med Cell Longev, 2018, (2018): 4612727.
|
14 |
Li J, Hu XS, Zhou FF, et al. Limb remote ischemic postconditioning protects integrity of the blood-brain barrier after stroke[J]. Neural Regen Res, 2018, 13 (9): 1585-1593.
|
15 |
Chen HS, Cui Y, Li XQ, et al. Effect of remote ischemic conditioning vs usual care on neurologic function in patients with acute moderate ischemic stroke: the RICAMIS randomized clinical trial[J]. Jama, 2022, 328 (7): 627-636.
|
16 |
McDonald MW, Dykes A, Jeffers MS, et al. Remote ischemic conditioning and stroke recovery[J]. Neurorehabil Neural Repair, 2021, 35 (6): 545-549.
|
17 |
Geng X, Wang Q, Lee H, et al. Remote ischemic postconditioning vs. physical exercise after stroke: an alternative rehabilitation strategy?[J]. Mol Neurobiol, 2021, 58 (7): 3141-3157.
|
18 |
Ren C, Wang P, Wang B, et al. Limb remote ischemic per-conditioning in combination with post-conditioning reduces brain damage and promotes neuroglobin expression in the rat brain after ischemic stroke[J]. Restor Neurol Neurosci, 2015, 33 (3): 369-379.
|
19 |
Gao X, Liu Y, Xie Y, et al. Remote ischemic postconditioning confers neuroprotective effects via inhibition of the BID-mediated mitochondrial apoptotic pathway[J]. Mol Med Rep, 2017, 16 (1): 515-522.
|
20 |
Yang J, Balkaya M, Beltran C, et al. Remote postischemic conditioning promotes stroke recovery by shifting circulating monocytes to CCR2 (+) proinflammatory subset[J]. J Neurosci, 2019, 39 (39): 7778-7789.
|
21 |
Chen GZ, Shan XY, Li XS, et al. Remote ischemic postconditioning protects the brain from focal ischemia/reperfusion injury by inhibiting autophagy through the mTOR/p70S6K pathway[J]. Neurol Res, 2018, 40 (3): 182-188.
|
22 |
Huang P, Xu M, Wu Y, et al. Multiple facets of TRPML1 in autophagy[J]. Cell Calcium, 2020 (88): 102196.
|
23 |
Li Z, Cui X, Lv H, et al. Remote ischemic postconditioning attenuates damage in rats with chronic cerebral ischemia by upregulating the autophagolysosome pathway via the activation of TFEB[J]. Exp Mol Pathol, 2020 (115): 104475.
|
24 |
Scotto Rosato A, Montefusco S, Soldati C, et al. TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway[J]. Nat Commun, 2019, 10 (1): 5630.
|