切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2024, Vol. 17 ›› Issue (03) : 211 -218. doi: 10.3877/cma.j.issn.1674-6880.2024.03.006

论著

神经重症患者气管插管拔除失败的风险因素分析
郑爽1, 张昕彤1, 陈晨1, 王思凡1, 燕晓翔1, 王长青1, 胡雅娟1,()   
  1. 1. 230022 合肥,安徽医科大学第一附属医院神经内科
  • 收稿日期:2023-11-27 出版日期:2024-06-30
  • 通信作者: 胡雅娟

Risk factors for failure of endotracheal extubation in patients with severe neuropathy

Shuang Zheng1, Xintong Zhang1, Chen Chen1, Sifan Wang1, Xiaoxiang Yan1, Changqing Wang1, Yajuan Hu1,()   

  1. 1. Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
  • Received:2023-11-27 Published:2024-06-30
  • Corresponding author: Yajuan Hu
引用本文:

郑爽, 张昕彤, 陈晨, 王思凡, 燕晓翔, 王长青, 胡雅娟. 神经重症患者气管插管拔除失败的风险因素分析[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 211-218.

Shuang Zheng, Xintong Zhang, Chen Chen, Sifan Wang, Xiaoxiang Yan, Changqing Wang, Yajuan Hu. Risk factors for failure of endotracheal extubation in patients with severe neuropathy[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2024, 17(03): 211-218.

目的

识别气管插管大于48 h且通过脱机试验的神经重症患者拔管的独立风险因素,并建立拔管风险预测模型。

方法

收集2020年4月至2023年8月安徽医科大学第一附属医院神经重症监护病房中接受规范化监护及治疗的83例神经重症患者的病例资料。根据拔管后96 h内是否需要再次插管或气管切开将83例患者分为拔管成功组(61例)和拔管失败组(22例)。比较两组患者的一般资料、神经功能、气道保护能力情况以及生理生化指标,最终通过多因素回归分析建立预测模型。进一步绘制受试者工作特征(ROC)曲线,检验研究结果的预测价值、敏感度和特异度,并采用Z检验对各评分的曲线下面积(AUC)进行比较。

结果

83例患者中有61例(73.5%)成功拔管,22例(26.5%)在拔管后96 h内呼吸障碍再次插管。两组患者格拉斯哥昏迷量表评分的运动子项(GCS-M)得分、肌力分级、拔管前意识水平、呛咳反应、吞咽功能、拔管后吸氧方式、拔管前体温、血钠离子浓度、Godet's评分、VISAGE评分和呼吸功能不全量表-插管(RIS-i)评分比较,差异均有统计学意义(P均< 0.05)。将GCS-M得分、拔管前意识水平、呛咳反应、吞咽功能及拔管前体温纳入多因素logistic回归分析,结果显示拔管前的GCS-M得分< 4分[比值比(OR)= 8.835,95%置信区间(CI)(1.638,47.659),P = 0.011]、呛咳反应> Ⅱ级[OR = 10.281,95%CI(2.366,44.129),P = 0.002]、体温≥ 37 ℃[OR = 4.506,95%CI(1.024,19.833),P = 0.046]是神经重症患者拔管失败的危险因素。进一步根据OR值对每个独立危险因素进行赋分,并建立神经危重拔管失败风险预测量表,总分为5分,ROC曲线分析显示本研究量表评分> 1分预测拔管失败(高失败风险)的敏感度为77.3%,特异度为85.2%,AUC为0.850[95%CI(0.775,0.919),P < 0.001]。Z检验结果显示,当前量表的预测价值高于Godet's评分(Z = 2.050,P = 0.040)、VISAGE评分(Z = 1.990,P = 0.047)。

结论

该临床预测评分可为神经重症患者脱机后拔管提供指导价值。

Objective

To identify the independent risk factors for extubation in neurological critically ill patients who had been intubated for more than 48 hours and passed the weaning test, and to establish an extubation risk prediction model.

Methods

The data of 83 neurological critically ill patients who received standardized monitoring and treatment in the neurological intensive care unit of the First Affiliated Hospital of Anhui Medical University from April 2020 to August 2023 were collected. According to whether they needed re-intubation or tracheotomy within 96 hours after extubation, the 83 patients were divided into a successful extubation group (61 cases) and a failed extubation group (22 cases). The general data, neurological function, airway protection ability, and physiological and biochemical indicators of the two groups were compared, and finally a prediction model was established by multivariate regression analysis. The receiver operating characteristic (ROC) curve was further drawn to test the predictive value, sensitivity, and specificity of research results, and the area under the curve (AUC) of each score was compared by the Z test.

Results

Among the 83 patients, 61 patients (73.5%) were successfully extubated, and 22 patients (26.5%) were reintubated due to respiratory dysfunction within 96 hours after extubation. There were significant differences in the Glasgow coma scale-motor (GCS-M) score, muscle strength grade, consciousness level before extubation, choking reaction, swallowing function, oxygen inhalation method after extubation, body temperature before extubation, blood sodium concentration, Godet's score, VISAGE score, and respiratory insufficiency scale-intubated (RIS-i) score between the two groups (all P < 0.05). The GCS-M score, consciousness level before extubation, choking reaction, swallowing function, and body temperature before extubation were included in multivariate logistic regression analysis. The results showed that the GCS-M score before extubation < 4 [odds ratio (OR) = 8.835, 95% confidence interval (CI) (1.638, 47.659), P = 0.011], choking reaction > grade Ⅱ [OR = 10.281, 95%CI (2.366, 44.129), P = 0.002], and body temperature ≥ 37 ℃ [OR = 4.506, 95%CI (1.024, 19.833), P = 0.046] were risk factors for extubation failure in neurological critically ill patients. Each independent risk factor was further scored according to the OR value, and a risk prediction scale for failure of extubation in critically ill patients with neurological diseases was established, with a total score of 5. ROC analysis showed that the sensitivity of the scale score > 1 in predicting failure of extubation (high risk of failure) was 77.3%, the specificity was 85.2%, and the AUC was 0.850 [95%CI (0.775, 0.919), P < 0.001]. The Z test showed that the predictive value of the current scale was higher than that of the Godet's score (Z = 2.050, P = 0.040) and VISAGE score (Z = 1.990, P = 0.047).

Conclusion

This clinical prediction score can provide guidance for extubation in critically ill patients with neurological diseases after weaning.

表1 两组神经重症患者临床资料比较[MP25P75)]
组别 例数 年龄(岁) 男性(例) 脑卒中(例) 插管时长(h) GCS-M得分(分) 肌力分级 拔管前意识水平(例) 氧合指数(mmHg)
Ⅰ级 Ⅱ级 Ⅲ级 Ⅳ级
拔管成功组 61 66.0(56.5,74.0) 37 42 120.0(72.0,192.0) 6.0(5.0,6.0) 5.0(4.0,5.0) 30 20 6 5 259.0(217.0,367.9)
拔管失败组 22 66.0(57.0,74.2) 12 17 78.0(48.0,174.0) 4.0(1.0,6.0) 5.0(3.0,5.0) 7 5 6 4 243.5(189.0,281.7)
t/χ2/Z   0.206 0.253 0.742 1.135 3.497 4.796 2.346 1.527
P   0.840 0.620 0.590 0.260 < 0.001 < 0.001 0.019 0.130
组别 例数 呛咳反应(例) 吞咽功能(例) 拔管后吸氧方式(例) 拔管前体温(例) 平均动脉压(mmHg, ± s 心率(次/min, ± s
Ⅰ级 Ⅱ级 Ⅲ级 Ⅳ级 Ⅰ级 Ⅱ级 Ⅲ级 普通吸氧 高流量温湿化氧疗 <37 ℃ ≥ 37 ℃
拔管成功组 61 24 31 4 2 39 19 3 40 21 31 30 89 ± 13 85 ± 16
拔管失败组 22 6 8 4 4 8 11 3 6 16 4 18 90 ± 17 90 ± 16
t/χ2/Z   2.073 2.315 9.600 4.885 0.278 1.195
P   0.040 0.020 0.002 0.008 0.782 0.236
组别 例数 呼吸频率(次/min, ± s 白细胞计数(× 109/L, ± s 血红蛋白(g/L, ± s 钠离子(mmol/L) 钾离子(mmol/L, ± s Godet's评分(分) VISAGE评分(分) RIS-i评分(分) ENIO评分(分)
拔管成功组 61 19 ± 4 10 ± 4 110 ± 22 139.7(137.0,146.7) 4.0 ± 0.6 12.0(9.0,14.0) 2.0(1.0,2.0) 6.0(5.0,7.0) 59.0(46.8,70.5)
拔管失败组 22 20 ± 4 11 ± 4 110 ± 25 137.5(132.5,141.6) 4.1 ± 0.4 14.0(14.0,14.0) 3.0(2.0,3.0) 4.0(3.0,5.0) 61.0(59.0,86.0)
t/χ2/Z   1.185 1.936 0.065 2.012 0.775 3.782 3.223 3.909 1.907
P   0.239 0.056 0.948 0.040 0.441 < 0.001 0.001 < 0.001 0.060
图1 不同评分方法预测通过SBT的神经重症患者拔管失败的ROC曲线分析注:SBT.自主呼吸试验;ROC.受试者工作特征;RIS-i.呼吸功能不全量表-插管
表2 通过SBT的神经重症患者拔管失败的多因素logistic回归分析
表3 通过SBT的神经重症患者拔管失败风险预测量表
表4 不同评分方法预测通过SBT的神经重症患者拔管失败的ROC曲线分析
1
Miltiades AN, Gershengorn HB, Hua M, et al. Cumulative probability and time to reintubation in U.S. ICUs[J]. Crit Care Med, 2017, 45 (5): 835-842.
2
Torrini F, Gendreau S, Morel J, et al. Prediction of extubation outcome in critically ill patients: a systematic review and meta-analysis[J]. Crit Care, 2021, 25 (1): 391.
3
Tanaka A, Shimomura Y, Uchiyama A, et al. Time definition of reintubation most relevant to patient outcomes in critically ill patients: a multicenter cohort study[J]. Crit Care, 2023, 27 (1): 378.
4
Pham T, Heunks L, Bellani G, et al. Weaning from mechanical ventilation in intensive care units across 50 countries (WEAN SAFE): a multicentre, prospective, observational cohort study[J]. Lancet Respir Med, 2023, 11 (5): 465-476.
5
Epstein SK. Putting it all together to predict extubation outcome[J]. Intensive Care Med, 2004, 30 (7): 1255-1257.
6
张娴,臧泽林,赵甜甜,等. ICU患者发生获得性衰弱的危险因素分析[J/CD].中华危重症医学杂志(电子版)201912(6):377-382.
7
Varón-Vega F, Giraldo-Cadavid LF, Uribe AM, et al. Utilization of spontaneous breathing trial, objective cough test, and diaphragmatic ultrasound results to predict extubation success: COBRE-US trial[J]. Crit Care, 2023, 27 (1): 414.
8
Liang J, Tian Y, Chen Z, et al. Influencing factors of weaning outcome of intensive care unit patients with planned extubation[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2021, 33 (5): 563-567.
9
冯煜坤,席修明.自主呼吸试验通过后拔管失败原因分析[J].内科急危重症杂志201925(2):120-122,159.
10
Godoy DA, Rovegno M, Jibaja M. Extubation after acute brain injury: an unsolved dilemma!![J]. Neurocrit Care, 2024, 40 (2): 385-390.
11
Namen AM, Ely EW, Tatter SB, et al. Predictors of successful extubation in neurosurgical patients[J]. Am J Respir Crit Care Med, 2001, 163 (3 Pt 1): 658-664.
12
Lei L, Wu C, Chen W, et al. Predictive value of stroke-related early tracheotomy score for tracheotomy in neurocritical patients[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2021, 33 (11): 1342-1346.
13
Bosel J, Niesen WD, Salih F, et al. Effect of early vs standard approach to tracheostomy on functional outcome at 6 months among patients with severe stroke receiving mechanical ventilation: the SETPOINT2 randomized clinical trial[J]. JAMA, 2022, 327 (19): 1899-1909.
14
Premraj L, Camarda C, White N, et al. Tracheostomy timing and outcome in critically ill patients with stroke: a meta-analysis and meta-regression[J]. Crit Care, 2023, 27 (1): 132.
15
Park JE, Kim DY, Park JW, et al. Development of a machine learning model for predicting weaning outcomes based solely on continuous ventilator parameters during spontaneous breathing trials[J]. Bioengineering (Basel), 2023, 10 (10): 1163.
16
田歌,潘速跃,廖伟,等.神经危重症患者拔除气管插管影响因素的研究[J].中华急诊医学杂志201221(12):1314-1318.
17
Godet T, Chabanne R, Marin J, et al. Extubation failure in brain-injured patients: risk factors and development of a prediction score in a preliminary prospective cohort study[J]. Anesthesiology, 2017, 126 (1): 104-114.
18
Mccredie VA, Ferguson ND, Pinto RL, et al. Airway management strategies for brain-injured patients meeting standard criteria to consider extubation. A prospective cohort study[J]. Ann Am Thorac Soc, 2017, 14 (1): 85-93.
19
Videtta W, Vallejos J, Roda G, et al. Predictors of successful extubation in neurocritical care patients[J]. Acta Neurochir Suppl, 2021, 131 (91-93).
20
Bansal V, Smischney NJ, Kashyap R, et al. Reintubation summation calculation: a predictive score for extubation failure in critically ill patients[J]. Front Med (Lausanne), 2022 (8): 789440.
21
Hirolli D, Srinivasaiah B, Muthuchellappan R, et al. Clinical scoring and ultrasound-based diaphragm assessment in predicting extubation failure in neurointensive care unit: a single-center observational study[J]. Neurocrit Care, 2023, 39 (3): 690-696.
22
Kishore R, Jhamb U. Effect of protocolized weaning and spontaneous breathing trial vs conventional weaning on duration of mechanical ventilation: a randomized controlled trial[J]. Indian J Crit Care Med, 2021, 25 (9): 1059-1065.
23
Li P, Sun Z, Xu J. Unplanned extubation among critically ill adults: a systematic review and meta-analysis[J]. Intensive Crit Care Nurs, 2022 (70): 103219.
24
Coplin WM, Pierson DJ, Cooley KD, et al. Implications of extubation delay in brain-injured patients meeting standard weaning criteria[J]. Am J Respir Crit Care Med, 2000, 161 (5): 1530-1536.
25
Cevik AA, Alao DO, Alyafei E, et al. Those who speak survive: the value of the verbal component of GCS in trauma[J]. Eur J Trauma Emerg Surg, 2023, 49 (2): 837-842.
26
Connolly BA, Jones GD, Curtis AA, et al. Clinical predictive value of manual muscle strength testing during critical illness: an observational cohort study[J]. Critical Care, 2013, 17 (5): R229.
27
Mehta R, Chinthapalli K. Glasgow coma scale explained[J]. BMJ, 2019 (365): l1296.
28
Cinotti R, Mijangos JC, Pelosi P, et al. Extubation in neurocritical care patients: the ENIO international prospective study[J]. Intensive Care Med, 2022, 48 (11): 1539-1550.
29
Cinotti R, Pelosi P, Schultz MJ, et al. Extubation strategies in neuro-intensive care unit patients and associations with outcomes: the ENIO multicentre international observational study[J]. Ann Transl Med, 2020, 8 (7): 503.
30
Baptistella AR, Mantelli LM, Matte L, et al. Prediction of extubation outcome in mechanically ventilated patients: development and validation of the extubation predictive score (ExPreS)[J]. PLoS One, 2021, 16 (3): e0248868.
31
Wang H, Zhao QY, Luo JC, et al. Early prediction of noninvasive ventilation failure after extubation: development and validation of a machine-learning model[J]. BMC Pulm Med, 2022, 22 (1): 304.
32
Brochard L, Rauss A, Benito S, et al. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation[J]. Am J Respir Crit Care Med, 1994, 150 (4): 896-903.
[1] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[2] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[3] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[4] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[5] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[6] 黄俊龙, 刘柏隆, 罗瑞翔, 李晓阳, 李文双, 柳政, 陈嘉良, 周祥福. 联合盆底彩超数据和临床资料探讨压力性尿失禁的危险因素[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 323-330.
[7] 林凯, 潘勇, 赵高平, 杨春. 造口还纳术后切口疝的危险因素分析与预防策略[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 634-638.
[8] 杨闯, 马雪. 腹壁疝术后感染的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 693-696.
[9] 周艳, 李盈, 周小兵, 程发辉, 何恒正. 不同类型补片联合Nissen 胃底折叠术修补食管裂孔疝的疗效及复发潜在危险因素[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 528-533.
[10] 张伟伟, 陈启, 翁和语, 黄亮. 随机森林模型预测T1 期结直肠癌淋巴结转移的初步研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 389-393.
[11] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[12] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[13] 李文哲, 王毅, 崔建, 郑启航, 王靖彦, 于湘友. 新疆维吾尔自治区重症患者急性肾功能异常的危险因素分析[J/OL]. 中华卫生应急电子杂志, 2024, 10(05): 269-276.
[14] 刘志超, 胡风云, 温春丽. 山西省脑卒中危险因素与地域的相关性分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 424-433.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要