切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2023, Vol. 16 ›› Issue (06) : 496 -500. doi: 10.3877/cma.j.issn.1674-6880.2023.06.010

综述

亚甲蓝用于脓毒症及脓毒性休克的研究进展
盛树悦, 马少林()   
  1. 200120 上海,同济大学附属上海市东方医院重症医学科
  • 收稿日期:2023-02-14 出版日期:2023-12-31
  • 通信作者: 马少林
  • 基金资助:
    浦东新区卫生健康委员会临床高峰学科建设计划项目(PWYgf2021-03)
  • Received:2023-02-14 Published:2023-12-31
引用本文:

盛树悦, 马少林. 亚甲蓝用于脓毒症及脓毒性休克的研究进展[J]. 中华危重症医学杂志(电子版), 2023, 16(06): 496-500.

脓毒症是指由感染诱发的危及生命的免疫性疾病和器官功能障碍,是一个全球性的健康问题[1]。全世界每年有4 890万人罹患脓毒症,其中1 100万人死亡,占全球死亡总数的19.7%[2]。脓毒性休克则是指由脓毒症引发的循环、细胞或代谢异常,并由此造成病死率增加[3-4]。在中国,重症监护病房(intensive care unit,ICU)住院患者中有近1/3的患者被诊断为脓毒症,脓毒性休克的病死率仍居高不下[5-6]。脓毒症及脓毒性休克已成为全球卫生优先事项[7],然而相应的有效治疗药物仍然是一个巨大的挑战。

表1 亚甲蓝治疗脓毒症/脓毒性休克临床研究的特点总结
纳入研究 研究类型 患者人群 患者例数 亚甲蓝给药剂量 研究结果
Kirov等[26] RCT 严重脓毒症和/或脓毒性休克 20 首剂2 mg/kg,随后按照0.25、0.5、1、2 mg·kg-1·h-1增加剂量,每个剂量持续静脉输注1 h MAP在输注后立即显著增加;血管活性药用量减少;住院病死率无差异
Memis等[27] RCT 严重脓毒症 30 0.5 mg·kg-1· h-1持续静脉输注6 h MAP较基线显著升高;亚甲蓝组血红蛋白浓度显著升高;住院病死率相似
Ismail等[28] RCT 难治性脓毒性休克的早产儿 28 30 min内1 mg/kg静脉推注负荷剂量,随后连续0.15 mg·kg-1· h-1静脉输注24 h MAP显著改善;NE用量显著减少
Gachot等[34] 前瞻性非随机性临床研究 严重脓毒性休克 6 10 min内3 mg/kg静脉输注 MAP和SVRI显著增加至2 h;动脉氧合指数下降;除一例患者外,其余患者均死亡
Preiser等[42] 前瞻性非随机性临床研究 严重脓毒性休克 14 15 min内2 mg/kg静脉推注 MAP和LVSW均显著增加;血乳酸浓度下降
Daemen-Gubbels等[43] 前瞻性非随机性临床研究 脓毒性休克 9 2 mg/kg静脉推注 MAP、SVR和CI增加;乳酸水平没有变化;除一例患者外,其余患者均死亡
Andresen等[33] 前瞻性非随机性临床研究 严重脓毒性休克 10 1 mg/kg静脉推注 收缩压、舒张压、MAP和SVRI均显著增加
Weingartner等[29] 前瞻性非随机性临床研究 严重脓毒性休克 10 4 mg/kg静脉输注1 h MAP和SVRI均显著增加;氧合指数明显下降
Donati等[30] 前瞻性非随机性临床研究 对常规治疗无反应的脓毒性休克 15 10 min内3 mg/kg静脉输注 MAP、SVRI和LVSW均显著增加
Park等[32] 前瞻性非随机性临床研究 难治性脓毒性休克 20 15 min内1 mg/kg静脉推注 MAP和SVRI显著增加;血乳酸水平明显下降;病死率为65%
Juffermans等[36] 前瞻性随机双盲临床研究 脓毒性休克 15 20 min内分别以1、3、7 mg/kg静脉推注 MAP、SVRI和每搏输出量显著增加;血乳酸水平明显下降;高剂量亚甲蓝会损害脾脏的灌注
11
高经华,刘志锋.难治性脓毒性休克治疗的研究进展[J/CD].中华危重症医学杂志(电子版)2020,13(5):386-389.
12
Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets[J]. Int J Mol Sci, 2019, 20 (21): 5376.
13
Linz AJ, Greenham RK, Fallon LF Jr. Methemoglobinemia: an industrial outbreak among rubber molding workers[J]. J Occup Environ Med, 2006, 48 (5): 523-528.
14
De Cruz SJ, Kenyon NJ, Sandrock CE. Bench-to-bedside review: the role of nitric oxide in sepsis[J]. Expert Rev Respir Med, 2009, 3 (5): 511-521.
15
Saha BK, Burns SL. The story of nitric oxide, sepsis and methylene blue: a comprehensive pathophysiologic review[J]. Am J Med Sci, 2020, 360 (4): 329-337.
16
Carvajal JA, Germain AM, Huidobro-Toro JP, et al. Molecular mechanism of cGMP-mediated smooth muscle relaxation[J]. J Cell Physiol, 2000, 184 (3): 409-420.
17
Puntillo F, Giglio M, Pasqualucci A, et al. Vasopressor-sparing action of methylene blue in severe sepsis and shock: a narrative review[J]. Adv Ther, 2020, 37 (9): 3692-3706.
18
Tchen S, Sullivan JB. Clinical utility of midodrine and methylene blue as catecholamine-sparing agents in intensive care unit patients with shock[J]. J Crit Care, 2020 (57): 148-156.
19
Kontos HA, Wei EP. Hydroxyl radical-dependent inactivation of guanylate cyclase in cerebral arterioles by methylene blue and by LY83583[J]. Stroke, 1993, 24 (3): 427-434.
20
Wolin MS, Cherry PD, Rodenburg JM, et al. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion[J]. J Pharmacol Exp Ther, 1990, 254 (3): 872-876.
21
Adjalley SH, Johnston GL, Li T, et al. Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue[J]. Proc Natl Acad Sci U S A, 2011, 108 (47): E1214-E1223.
22
Barclay JA, Ziemba SE, Ibrahim RB. Dapsone-induced methemoglobinemia: a primer for clinicians[J]. Ann Pharmacother, 2011, 45 (9): 1103-1115.
23
Van Berkel MA, Fuller LA, Alexandrov AW, et al. Methylene blue, midodrine, and pseudoephedrine: a review of alternative agents for refractory hypotension in the intensive care unit[J]. Crit Care Nurs Q, 2015, 38 (4): 345-358.
24
Jang DH, Nelson LS, Hoffman RS. Methylene blue for distributive shock: a potential new use of an old antidote[J]. J Med Toxicol, 2013, 9 (3): 242-249.
25
Schneider F, Lutun P, Hasselmann M, et al. Methylene blue increases systemic vascular resistance in human septic shock. Preliminary observations[J]. Intensive Care Med, 1992, 18 (5): 309-311.
26
Kirov MY, Evgenov OV, Evgenov NV, et al. Infusion of methylene blue in human septic shock: a pilot, randomized, controlled study[J]. Crit Care Med, 2001, 29 (10): 1860-1867.
27
Memis D, Karamanlioglu B, Yuksel M, et al. The influence of methylene blue infusion on cytokine levels during severe sepsis[J]. Anaesth Intensive Care, 2002, 30 (6): 755-762.
28
Ismail R, Awad H, Allam R, et al. Methylene blue versus vasopressin analog for refractory septic shock in the preterm neonate: a randomized controlled trial[J]. J Neonatal Perinatal Med, 2022, 15 (2): 265-273.
29
Weingartner R, Oliveira E, Oliveira ES, et al. Blockade of the action of nitric oxide in human septic shock increases systemic vascular resistance and has detrimental effects on pulmonary function after a short infusion of methylene blue[J]. Braz J Med Biol Res, 1999, 32 (12): 1505-1513.
30
Donati A, Conti G, Loggi S, et al. Does methylene blue administration to septic shock patients affect vascular permeability and blood volume?[J]. Crit Care Med, 2002, 30 (10): 2271-2277.
31
Brown G, Frankl D, Phang T. Continuous infusion of methylene blue for septic shock[J]. Postgrad Med J, 1996, 72 (852): 612-614.
32
Park BK, Shim TS, Lim CM, et al. The effects of methylene blue on hemodynamic parameters and cytokine levels in refractory septic shock[J]. Korean J Intern Med, 2005, 20 (2): 123-128.
33
Andresen M, Dougnac A, Díaz O, et al. Use of methylene blue in patients with refractory septic shock: impact on hemodynamics and gas exchange[J]. J Crit Care, 1998, 13 (4): 164-168.
34
Gachot B, Bedos JP, Veber B, et al. Short-term effects of methylene blue on hemodynamics and gas exchange in humans with septic shock[J]. Intensive Care Med, 1995, 21 (12): 1027-1031.
35
Dumbarton TC, Minor S, Yeung CK, et al. Prolonged methylene blue infusion in refractory septic shock: a case report[J]. Can J Anaesth, 2011, 58 (4): 401-405.
36
Juffermans NP, Vervloet MG, Daemen-Gubbels CR, et al. A dose-finding study of methylene blue to inhibit nitric oxide actions in the hemodynamics of human septic shock[J]. Nitric Oxide, 2010, 22 (4): 275-280.
37
Zhang X, Gao Y, Pan P, et al. Methylene blue in the treatment of vasodilatory shock: a meta-analysis[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2017, 29 (11): 982-987.
38
Dumbarton TC, Gorman SK, Minor S, et al. Local cutaneous necrosis secondary to a prolonged peripheral infusion of methylene blue in vasodilatory shock[J]. Ann Pharmacother, 2012, 46 (3): e6.
39
Tawil JN, Khatib D, Jakobsons JJ, et al. Rainbow after the storm[J]. Br J Anaesth, 2017, 118 (4): 641.
40
Mount JC, Rowe AS. Use of methylene blue for refractory septic shock during continuous venovenous hemodiafiltration[J]. Pharmacotherapy, 2010, 30 (3): 323.
41
Zygun DA, Bradley PG, Menon DK. Effect of methylene blue on middle cerebral artery flow velocity in a patient with severe sepsis following clipping of a cerebral aneurysm[J]. Neurocrit Care, 2005, 2 (1): 39-42.
42
Preiser JC, Lejeune P, Roman A, et al. Methylene blue administration in septic shock: a clinical trial[J]. Crit Care Med, 1995, 23 (2): 259-264.
43
Daemen-Gubbels CR, Groeneveld PH, Groeneveld AB, et al. Methylene blue increases myocardial function in septic shock[J]. Crit Care Med, 1995, 23 (8): 1363-1370.
1
Mok G, Hendin A, Reardon P, et al. Macrocirculatory and microcirculatory endpoints in sepsis resuscitation[J]. J Intensive Care Med, 2021, 36 (12): 1385-1391.
2
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395 (10219): 200-211.
3
Bauer M, Gerlach H, Vogelmann T, et al. Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019—results from a systematic review and meta-analysis[J]. Crit Care, 2020, 24 (1): 239.
4
Vincent JL, Jones G, David S, et al. Frequency and mortality of septic shock in Europe and North America: a systematic review and meta-analysis[J]. Crit Care, 2019, 23 (1): 196.
5
Liu YC, Yao Y, Yu MM, et al. Frequency and mortality of sepsis and septic shock in China: a systematic review and meta-analysis[J]. BMC Infect Dis, 2022, 22 (1): 564.
6
高玉雷,张祥,刘艳存,等.经急诊诊断脓毒症住院患者流行病学特点分析[J/CD].中华危重症医学杂志(电子版)2022,15(3):210-214.
7
Reinhart K, Daniels R, Kissoon N, et al. Recognizing sepsis as a global health priority—a WHO resolution[J]. N Engl J Med, 2017, 377 (5): 414-417.
8
Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Crit Care Med, 2021, 49 (11): e1063-e1143.
9
吴飞,郑瑞强,陈齐红.脓毒性休克初始液体复苏:该如何选择?[J/CD].中华危重症医学杂志(电子版)2021,14(3):244-247.
10
Bakker J, Kattan E, Annane D, et al. Current practice and evolving concepts in septic shock resuscitation[J]. Intensive Care Med, 2022, 48 (2): 148-163.
44
Belletti A, Musu M, Silvetti S, et al. Non-adrenergic vasopressors in patients with or at risk for vasodilatory shock. A systematic review and meta-analysis of randomized trials[J]. PLoS One, 2015, 10 (11): e0142605.
45
Porizka M, Kopecky P, Dvorakova H, et al. Methylene blue administration in patients with refractory distributive shock—a retrospective study[J]. Sci Rep, 2020, 10 (1): 1828.
No related articles found!
阅读次数
全文


摘要