1 |
Yuen MF, Chen DS, Dusheiko GM, et al. Hepatitis B virus infection[J]. Nat Rev Dis Primers, 2018 (4): 18035.
|
2 |
Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world[J]. J Hepatol, 2019, 70 (1): 151-171.
|
3 |
Phillips S, Jagatia R, Chokshi S. Novel therapeutic strategies for chronic hepatitis B[J]. Virulence, 2022, 13 (1): 1111-1132.
|
4 |
Khanam A, Chua JV, Kottilil S. Immunopathology of chronic hepatitis B infection: role of innate and adaptive immune response in disease progression[J]. Int J Mol Sci, 2021, 22 (11): 5497.
|
5 |
Kasakovski D, Xu L, Li Y. T cell senescence and CAR-T cell exhaustion in hematological malignancies[J]. J Hematol Oncol, 2018, 11 (1): 91.
|
6 |
Bertoletti A, Ferrari C. Adaptive immunity in HBV infection[J]. J Hepatol, 2016, 64 (1 Suppl): S71-S83.
|
7 |
Budimir N, Thomas GD, Dolina JS, et al. Reversing T-cell exhaustion in cancer: lessons learned from PD-1/PD-L1 immune checkpoint blockade[J]. Cancer Immunol Res, 2022, 10 (2): 146-153.
|
8 |
Ye B, Liu X, Li X, et al. T-Cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance[J]. Cell Death Dis, 2015, 6 (3): e1694.
|
9 |
Cui D, Jiang D, Yan C, et al. Immune checkpoint molecules expressed on CD4+ T cell subsets in chronic asymptomatic hepatitis B virus carriers with hepatitis B e antigen-negative[J]. Front Microbiol, 2022 (13): 887408.
|
10 |
Saraceni C, Birk J. A review of hepatitis B virus and hepatitis C virus immunopathogenesis[J]. J Clin Transl Hepatol, 2021, 9 (3): 409-418.
|
11 |
Zeng Z, Wei F, Ren X. Exhausted T cells and epigenetic status[J]. Cancer Biol Med, 2020, 17 (4): 923-936.
|
12 |
Ferrando-Martinez S, Snell Bennett A, Lino E, et al. Functional exhaustion of HBV-specific CD8 T cells impedes PD-L1 blockade efficacy in chronic HBV infection[J]. Front Immunol, 2021 (12): 648420.
|
13 |
Dong Y, Li X, Zhang L, et al. CD4+ T cell exhaustion revealed by high PD-1 and LAG-3 expression and the loss of helper T cell function in chronic hepatitis B[J]. BMC Immunol, 2019, 20 (1): 27.
|
14 |
Wang D, Fu B, Shen X, et al. Restoration of HBV-specific CD8+ T-cell responses by sequential low-dose IL-2 treatment in non-responder patients after IFN-α therapy[J]. Signal Transduct Target Ther, 2021, 6 (1): 376.
|
15 |
Hashimoto M, Araki K, Cardenas MA, et al. PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program[J]. Nature, 2022, 610 (7930): 173-181.
|
16 |
Feng XX, Chi G, Wang H, et al. IL-37 suppresses the sustained hepatic IFN-γ/TNF-α production and T cell-dependent liver injury[J]. Int Immunopharmacol, 2019 (69): 184-193.
|
17 |
Wang H, Luo H, Wan X, et al. TNF-α/IFN-γ profile of HBV-specific CD4 T cells is associated with liver damage and viral clearance in chronic HBV infection[J]. J Hepatol, 2020, 72 (1): 45-56.
|
18 |
Jiang D, Chen C, Yan D, et al. Exhausted phenotype of circulating CD8+ T cell subsets in hepatitis B virus carriers[J]. BMC Immunol, 2022, 23 (1): 18.
|
19 |
Liu Y, Wang X, Yu L. Th17, rather than Th1 cell proportion, is closely correlated with elevated disease severity, higher inflammation level, and worse prognosis in sepsis patients[J]. J Clin Lab Anal, 2021, 35 (5): e23753.
|
20 |
Buschow SI, Jansen DTSL. CD4+ T cells in chronic hepatitis B and T cell-directed immunotherapy[J]. Cells, 2021, 10 (5): 1114.
|
21 |
Díaz A, González-Alayón I, Pérez-Torrado V, et al. CD40-CD154: a perspective from type 2 immunity[J]. Semin Immunol, 2021 (53): 101528.
|
22 |
Bullock TNJ. CD40 stimulation as a molecular adjuvant for cancer vaccines and other immunotherapies[J]. Cell Mol Immunol, 2022, 19 (1): 14-22.
|
23 |
Gu Y, Lian Y, Gu L, et al. Correlations between cytokines produced by T cells and clinical-virological characteristics in untreated chronic hepatitis B patients[J]. BMC Infect Dis, 2019, 19 (1): 216.
|
24 |
Zhang Q, Huang H, Sun A, et al. Change of cytokines in chronic hepatitis B patients and HBeAg are positively correlated with HBV RNA, based on real-world study[J]. J Clin Transl Hepatol, 2022, 10 (3): 390-397.
|
25 |
Ma Q, Dong X, Liu S, et al. Hepatitis B e antigen induces NKG2A+ natural killer cell dysfunction via regulatory T cell-derived interleukin 10 in chronic hepatitis B virus infection[J]. Front Cell Dev Biol, 2020 (8): 421.
|
26 |
Ross SH, Cantrell DA. Signaling and function of interleukin-2 in T lymphocytes[J]. Annu Rev Immunol, 2018 (36): 411-433.
|
27 |
Li X, Liu X, Wang W. IL-35: a novel immunomodulator in hepatitis B virus-related liver diseases[J]. Front Cell Dev Biol, 2021 (9): 614847.
|
28 |
Sears JD, Waldron KJ, Wei J, et al. Targeting metabolism to reverse T-cell exhaustion in chronic viral infections[J]. Immunology, 2021, 162 (2): 135-144.
|
29 |
Masson JJ, Billings HW, Palmer CS. Metabolic reprogramming during hepatitis B disease progression offers novel diagnostic and therapeutic opportunities[J]. Antivir Chem Chemother, 2017, 25 (2): 53-57.
|
30 |
Zheng K, Zheng X, Yang W. The role of metabolic dysfunction in T-cell exhaustion during chronic viral infection[J]. Front Immunol, 2022 (13): 843242.
|
31 |
Bettonville M, d'Aria S, Weatherly K, et al. Long-term antigen exposure irreversibly modifies metabolic requirements for T cell function[J]. Elife, 2018 (7): e30938.
|
32 |
Iannacone M, Guidotti LG. Immunobiology and pathogenesis of hepatitis B virus infection[J]. Nat Rev Immunol, 2022, 22 (1): 19-32.
|
33 |
Baudi I, Kawashima K, Isogawa M. HBV-specific CD8+ T-cell tolerance in the liver[J]. Front Immunol, 2021 (12): 721975.
|
34 |
Zander R, Schauder D, Xin G, et al. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer[J]. Immunity, 2019, 51 (6): 1028-1042.e4.
|
35 |
Meng Z, Chen Y, Lu M. Advances in targeting the innate and adaptive immune systems to cure chronic hepatitis B virus infection[J]. Front Immunol, 2019 (10): 3127.
|
36 |
Zhang K, Liu Y, Yang X, et al. HBV promotes the recruitment of IL-17 secreting T cells via chemokines CCL22 and CCL17[J]. Liver Int, 2020, 40 (6): 1327-1338.
|
37 |
Li TY, Yang Y, Zhou G, et al. Immune suppression in chronic hepatitis B infection associated liver disease: a review[J]. World J Gastroenterol, 2019, 25 (27): 3527-3537.
|
38 |
Yang F, Yu X, Zhou C, et al. Hepatitis B e antigen induces the expansion of monocytic myeloid-derived suppressor cells to dampen T-cell function in chronic hepatitis B virus infection[J]. PLoS Pathog, 2019, 15 (4): e1007690.
|
39 |
Khanam A, Ayithan N, Tang L, et al. IL-21-deficient T follicular helper cells support B cell responses through IL-27 in patients with chronic hepatitis B[J]. Front Immunol, 2021 (11): 599648.
|
40 |
中华医学会肝病学分会,中华医学会感染病学分会.慢性乙型肝炎防治指南(2022年版)[J].中华临床感染病杂志,2022,15(6):401-427.
|
41 |
Chen Y, Tian Z. HBV-induced immune imbalance in the development of HCC[J]. Front Immunol, 2019 (10): 2048.
|
42 |
Zhang C, Li J, Cheng Y, et al. Single-cell RNA sequencing reveals intrahepatic and peripheral immune characteristics related to disease phases in HBV-infected patients[J]. Gut, 2023, 72 (1): 153-167.
|
43 |
Bertoletti A, Kennedy PT. The immune tolerant phase of chronic HBV infection: new perspectives on an old concept[J]. Cell Mol Immunol, 2015, 12 (3): 258-263.
|
44 |
Tang LSY, Covert E, Wilson E, et al. Chronic hepatitis B infection: a review[J]. JAMA, 2018, 319 (17): 1802-1813.
|
45 |
Ma Z, Cao Q, Xiong Y, et al. Interaction between hepatitis B virus and Toll-like receptors: current status and potential therapeutic use for chronic hepatitis B[J]. Vaccines (Basel), 2018, 6 (1): 6.
|
46 |
Viganò S, Banga R, Bellanger F, et al. CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression[J]. PLoS Pathog, 2014, 10 (9): e1004380.
|
47 |
Li M, Zhou ZH, Sun XH, et al. Hepatitis B core antigen upregulates B7-H1 on dendritic cells by activating the AKT/ERK/P38 pathway: a possible mechanism of hepatitis B virus persistence[J]. Lab Invest, 2016, 96 (11): 1156-1164.
|
48 |
Cho HJ, Cheong JY. Role of immune cells in patients with hepatitis b virus-related hepatocellular carcinoma[J]. Int J Mol Sci, 2021, 22 (15): 8011.
|
49 |
Barsch M, Salié H, Schlaak AE, et al. T-cell exhaustion and residency dynamics inform clinical outcomes in hepatocellular carcinoma[J]. J Hepatol, 2022, 77 (2): 397-409.
|
50 |
Schuch A, Salimi Alizei E, Heim K, et al. Phenotypic and functional differences of HBV core-specific versus HBV polymerase-specific CD8+ T cells in chronically HBV-infected patients with low viral load[J]. Gut, 2019, 68 (5): 905-915.
|
51 |
Jia L, Gao Y, He Y, et al. HBV induced hepatocellular carcinoma and related potential immunotherapy[J]. Pharmacol Res, 2020 (159): 104992.
|
52 |
Trehanpati N, Vyas AK. Immune regulation by T regulatory cells in hepatitis B virus-related inflammation and cancer[J]. Scand J Immunol, 2017, 85 (3): 175-181.
|
53 |
Lim CJ, Lee YH, Pan L, et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma[J]. Gut, 2019, 68 (5): 916-927.
|
54 |
Berumen J, Baglieri J, Kisseleva T, et al. Liver fibrosis: pathophysiology and clinical implications[J]. WIREs Mech Dis, 2021, 13 (1): e1499.
|
55 |
Keegan AD, Leonard WJ, Zhu J. Recent advances in understanding the role of IL-4 signaling[J]. Fac Rev, 2021 (10): 71.
|
56 |
Li X, Su Y, Hua X, et al. Levels of hepatic Th17 cells and regulatory T cells upregulated by hepatic stellate cells in advanced HBV-related liver fibrosis[J]. J Transl Med, 2017, 15 (1): 75.
|
57 |
Milosavljevic N, Gazdic M, Simovic Markovic B, et al. Mesenchymal stem cells attenuate liver fibrosis by suppressing Th17 cells — an experimental study[J]. Transpl Int, 2018, 31 (1): 102-115.
|
58 |
Albillos A, Martin-Mateos R, Van der Merwe S, et al. Cirrhosis-associated immune dysfunction[J]. Nat Rev Gastroenterol Hepatol, 2022, 19 (2): 112-134.
|
59 |
Machicote A, Belén S, Baz P, et al. Human CD8+HLA-DR+ regulatory T cells, similarly to classical CD4+Foxp3+ cells, suppress immune responses via PD-1/PD-L1 axis[J]. Front Immunol, 2018 (9): 2788.
|
60 |
Lebossé F, Gudd C, Tunc E, et al. CD8+ T cells from patients with cirrhosis display a phenotype that may contribute to cirrhosis-associated immune dysfunction[J]. EBioMedicine, 201 (49): 258-268.
|
61 |
Khamri W, Gudd C, Liu T, et al. Suppressor CD4+ T cells expressing HLA-G are expanded in the peripheral blood from patients with acute decompensation of cirrhosis[J]. Gut, 2022, 71 (6): 1192-1202.
|
62 |
Xu HH, Gan J, Xu DP, et al. Comprehensive transcriptomic analysis reveals the role of the immune checkpoint HLA-G molecule in cancers[J]. Front Immunol, 2021 (12): 614773.
|
63 |
Rueschenbaum S, Ciesek S, Queck A, et al. Dysregulated adaptive immunity is an early event in liver cirrhosis preceding acute-on-chronic liver failure[J]. Front Immunol, 2021 (11): 534731.
|
64 |
Korf H, du Plessis J, van Pelt J, et al. Inhibition of glutamine synthetase in monocytes from patients with acute-on-chronic liver failure resuscitates their antibacterial and inflammatory capacity[J]. Gut, 2019, 68 (10): 1872-1883.
|
65 |
Dirchwolf M, Podhorzer A, Marino M, et al. Immune dysfunction in cirrhosis: distinct cytokines phenotypes according to cirrhosis severity[J]. Cytokine, 2016 (77): 14-25.
|
66 |
Zeng Y, Li Y, Xu Z, et al. Myeloid-derived suppressor cells expansion is closely associated with disease severity and progression in HBV-related acute-on-chronic liver failure[J]. J Med Virol, 2019, 91 (8): 1510-1518.
|
67 |
Khamri W, Abeles RD, Hou TZ, et al. Increased expression of cytotoxic T-lymphocyte-associated protein 4 by T cells, induced by B7 in Sera, reduces adaptive immunity in patients with acute liver failure[J]. Gastroenterology, 2017, 153 (1): 263-276.e8.
|
68 |
Yang L, Zhang Q, Song J, et al. Interleukin-35 suppresses CD8+ T cell activity in patients with viral hepatitis-induced acute-on-chronic liver failure[J]. Dig Dis Sci, 2020, 65 (12): 3614-3623.
|
69 |
Zhang Z, Zhang JY, Wherry EJ, et al. Dynamic programmed death 1 expression by virus-specific CD8 T cells correlates with the outcome of acute hepatitis B[J]. Gastroenterology, 2008, 134 (7): 1938-1949.e3.
|
70 |
Wang WX, Jia R, Jin XY, et al. Serum cytokine change profile associated with HBsAg loss during combination therapy with PEG-IFN-α in NAs-suppressed chronic hepatitis B patients[J]. Front Immunol, 2023 (14): 1121778.
|
71 |
Tao Y, Wu D, Zhou L, et al. Present and future therapies for chronic hepatitis B[J]. Adv Exp Med Biol, 2020 (1179): 137-186.
|
72 |
European Association for the Study of the Liver. EASL 2017 clinical practice guidelines on the management of hepatitis B virus infection[J]. J Hepatol, 2017, 67 (2): 370-398.
|
73 |
Wong GLH, Gane E, Lok ASF. How to achieve functional cure of HBV: stopping NUCs, adding interferon or new drug development?[J]. J Hepatol, 2022, 76 (6): 1249-1262.
|
74 |
Kim JH, Ghosh A, Ayithan N, et al. Circulating serum HBsAg level is a biomarker for HBV-specific T and B cell responses in chronic hepatitis B patients Sci[J]. Sci Rep, 2020, 10 (1): 1835.
|
75 |
Tout I, Lampertico P, Berg T, et al. Perspectives on stopping nucleos (t)ide analogues therapy in patients with chronic hepatitis B[J]. Antiviral Res, 2021 (185): 104992.
|
76 |
Huang D, Yan W, Han M, et al. Insufficient immunity led to virologic breakthrough in NAs-treated chronic hepatitis B patients switching to Peg-IFN-α[J]. Antiviral Res, 2022 (197): 105220.
|
77 |
Miller BC, Sen DR, Al Abosy R, et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to check point blockade[J]. Nat Immunol, 2019, 20 (3): 326-336.
|
78 |
He R, Hou S, Liu C, et al. Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection[J]. Nature, 2016, 537 (7620): 412-428.
|
79 |
Chi Z, Lu Y, Yang Y, et al. Transcriptional and epigenetic regulation of PD-1 expression[J]. Cell Mol Life Sci, 2021, 78 (7): 3239-3246.
|
80 |
Jiao L, Chen J, Wu X, et al. Correlation of CpG methylation of the Pdcd1 gene with PD-1 expression on CD8+ T cells and medical laboratory indicators in chronic hepatitis B infection[J]. J Gene Med, 2020, 22 (2): e3148.
|
81 |
Sharma P, Goswami S, Raychaudhuri D, et al. Immune checkpoint therapy—current perspectives and future directions[J]. Cell, 2023, 186 (8): 1652-1669.
|
82 |
Tang R, Rangachari M, Kuchroo VK. Tim-3: a co-receptor with diverse roles in T cell exhaustion and tolerance[J]. Semin Immunol, 2019 (42): 101302.
|
83 |
Shahbaz S, Dunsmore G, Koleva P, et al. Galectin-9 and VISTA expression define terminally exhausted T cells in HIV-1 infection[J]. J Immunol, 2020, 204 (9): 2474-2491.
|