切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2023, Vol. 16 ›› Issue (02) : 142 -148. doi: 10.3877/cma.j.issn.1674-6880.2023.02.010

综述

肠道菌群在危重症患者肠内营养代谢中作用的研究进展
杜同跃, 郑以山()   
  1. 210003 南京,南京中医药大学附属南京医院(南京市第二医院)重症医学科
  • 收稿日期:2022-07-30 出版日期:2023-04-30
  • 通信作者: 郑以山
  • 基金资助:
    南京市卫生科技发展专项资金项目(YKK21121)
  • Received:2022-07-30 Published:2023-04-30
引用本文:

杜同跃, 郑以山. 肠道菌群在危重症患者肠内营养代谢中作用的研究进展[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 142-148.

肠内营养支持在危重症患者治疗过程中的重要作用得到广泛认可,尤其是对于在重症监护病房(intensive care unit,ICU)长期住院的患者。肠内营养可以为危重症患者提供长期的能量代谢支持,保护肠道功能,促进肠道免疫反应,改善预后[1]。然而,尽管国内外提出了针对危重症患者肠内营养的各种策略[2-3],但喂养不耐受(feeding intolerance,FI)和再喂养综合征(refeeding syndrome,RFS)中磷代谢异常发生率分别高达64.14%和34%[4-6]。近期一项多中心、大数据的研究表明,发生FI的患者肠内营养摄入量较正常患者减少10%,同时呼吸机使用时间延长,ICU住院天数增加,病死率升高[7];此外多项研究显示,RFS为危重症患者死亡的独立危险因素[8-9]。因此,FI和RFS不仅导致营养目标难以达成,而且可能伴发其他严重的并发症,严重影响危重症患者的康复及预后。究其原因,可能是由于当前的肠内营养策略仅仅局限于能量和氮平衡指标,忽略了宿主和肠道菌群如何处理和利用这些营养物质。近年来肠道菌群在慢性疾病中的作用获得重大突破,已发现肠道菌群与严重疾病之间存在双向关系。因此,以肠道菌群变化为出发点可能弥补传统肠内营养策略的不足,为危重症患者肠内营养提供新思路。本研究主要介绍ICU环境下影响肠道菌群的因素、肠道菌群结构和功能的改变以及调节肠道菌群的方法,讨论肠道菌群研究的困境及其未来发展方向。

1
缪小莉,叶纪录,濮雪华,等.添加果胶膳食纤维的肠内营养对重症患者免疫功能及胃肠道功能的影响[J/CD].中华危重症医学杂志(电子版)202114(6):460-465.
2
Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit[J]. Clin Nutr, 2019, 38 (1): 48-79.
3
Reintam Blaser A, Starkopf J, Alhazzani W, et al. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines[J]. Intensive Care Med, 2017, 43 (3): 380-398.
4
Yahyapoor F, Dehnavi Z, Askari G, et al. The prevalence and possible causes of enteral tube feeding intolerance in critically ill patients: a cross-sectional study[J]. J Res Med Sci, 2021 (26): 60.
5
Lin Y, Chen M, Peng Y, et al. Feeding intolerance and risk of poor outcome in patients undergoing cardiopulmonary bypass surgery[J]. Br J Nutr, 2021, 126 (9): 1340-1346.
6
McKnight CL, Newberry C, Sarav M, et al. Refeeding syndrome in the critically ill: a literature review and clinician's guide[J]. Curr Gastroenterol Rep, 2019, 21 (11): 58.
7
Heyland DK, Ortiz A, Stoppe C, et al. Incidence, risk factors, and clinical consequence of enteral feeding intolerance in the mechanically ventilated critically ill: an analysis of a multicenter, multiyear database[J]. Crit Care Med, 2021, 49 (1): 49-59.
8
Sacks D, Baxter B, Campbell BCV, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke[J]. Int J Stroke, 2018, 13 (6): 612-632.
9
Xiong R, Huang H, Wu Y, et al. Incidence and outcome of refeeding syndrome in neurocritically ill patients[J]. Clin Nutr, 2021, 40 (3): 1071-1076.
10
Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body[J]. Nature, 2014, 509 (7500): 357-360.
11
Miniet AA, Grunwell JR, Coopersmith CM. The microbiome and the immune system in critical illness[J]. Curr Opin Crit Care, 2021, 27 (2): 157-163.
12
Meng M, Klingensmith NJ, Coopersmith CM. New insights into the gut as the driver of critical illness and organ failure[J]. Curr Opin Crit Care, 2017, 23 (2): 143-148.
13
Zhang X, Yang X, Zhang Z, et al. Analysis of intestinal patients' flora changes with severe pneumonia based on 16SrDNA sequencing technology[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2019, 31 (12): 1479-1484.
14
Dickson RP. The microbiome and critical illness[J]. Lancet Respir Med, 2016, 4 (1): 59-72.
15
McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.)[J]. JPEN J Parenter Enteral Nutr, 2016, 40 (2): 159-211.
16
Kelly LS, Apple CG, Gharaibeh R, et al. Stress-related changes in the gut microbiome after trauma[J]. J Trauma Acute Care Surg, 2021, 91 (1): 192-199.
17
Davison JM, Wischmeyer PE. Probiotic and synbiotic therapy in the critically ill: state of the art[J]. Nutrition, 2019 (59): 29-36.
18
Theriot CM, Koenigsknecht MJ, Carlson PE Jr, et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection[J]. Nat Commun, 2014 (5): 3114.
19
Panda S, El khader I, Casellas F, et al. Short-term effect of antibiotics on human gut microbiota[J]. PLoS One, 2014, 9 (4): e95476.
20
Theriot CM, Bowman AA, Young VB. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine[J]. mSphere, 2016, 1 (1): e00045-15.
21
Lankelma JM, Birnie E, Weehuizen TAF, et al. The gut microbiota as a modulator of innate immunity during melioidosis[J]. PLoS Negl Trop Dis, 2017, 11 (4): e0005548.
22
Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria[J]. Nature, 2018, 555 (7698): 623-628.
23
Maier L, Goemans CV, Wirbel J, et al. Unravelling the collateral damage of antibiotics on gut bacteria[J]. Nature, 2021, 599 (7883): 120-124.
24
Banerjee S, Sindberg G, Wang F, et al. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation[J]. Mucosal Immunol, 2016, 9 (6): 1418-1428.
25
Rogers MAM, Aronoff DM. The influence of non-steroidal anti-inflammatory drugs on the gut microbiome[J]. Clin Microbiol Infect, 2016, 22 (2): 178.e1-178.e9.
26
Flowers SA, Baxter NT, Ward KM, et al. Effects of atypical antipsychotic treatment and resistant starch supplementation on gut microbiome composition in a cohort of patients with bipolar disorder or schizophrenia[J]. Pharmacotherapy, 2019, 39 (2): 161-170.
27
Macke L, Schulz C, Koletzko L, et al. Systematic review: the effects of proton pump inhibitors on the microbiome of the digestive tract-evidence from next-generation sequencing studies[J]. Aliment Pharmacol Ther, 2020, 51 (5): 505-526.
28
Rosario D, Benfeitas R, Bidkhori G, et al. Understanding the representative gut microbiota dysbiosis in metformin-treated type 2 diabetes patients using genome-scale metabolic modeling[J]. Front Physiol, 2018 (9): 775.
29
Thursby E, Juge N. Introduction to the human gut microbiota[J]. Biochem J, 2017, 474 (11): 1823-1836.
30
Valdes AM, Walter J, Segal E, et al. Role of the gut microbiota in nutrition and health[J]. BMJ, 2018 (361): k2179.
31
Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases[J]. Microorganisms, 2019, 7 (1): 14.
32
Lankelma JM, van Vught LA, Belzer C, et al. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study[J]. Intensive Care Med, 2017, 43 (1): 59-68.
33
Iapichino G, Lankelma JM, Joost Wiersinga W. Gut microbiota disruption in critically ill patients: discussion on "critically ill patients demonstrate large interpersonal variation of intestinal microbiota dysregulation: a pilot study"[J]. Intensive Care Med, 2017, 43 (5): 718-719.
34
Howard BM, Kornblith LZ, Christie SA, et al. Characterizing the gut microbiome in trauma: significant changes in microbial diversity occur early after severe injury[J]. Trauma Surg Acute Care Open, 2017, 2 (1): e000108.
35
Blaut M, Clavel T. Metabolic diversity of the intestinal microbiota: implications for health and disease[J]. J Nutr, 2007, 137 (3 Suppl 2): 751S-755S.
36
McKenney PT, Pamer EG. From hype to hope: the gut microbiota in enteric infectious disease[J]. Cell, 2015, 163 (6): 1326-1332.
37
Mathewson ND, Jenq R, Mathew AV, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease[J]. Nat Immunol, 2016, 17 (5): 505-513.
38
De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156 (1-2): 84-96.
39
Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components[J]. Eur J Nutr, 2018, 57 (1): 1-24.
40
Morowitz MJ, Carlisle EM, Alverdy JC. Contributions of intestinal bacteria to nutrition and metabolism in the critically ill[J]. Surg Clin North Am, 2011, 91 (4): 771-785.
41
Meijer-Severs GJ, van Santen E. Short-chain fatty acids and succinate in feces of healthy human volunteers and their correlation with anaerobe cultural counts[J]. Scand J Gastroenterol, 1987, 22 (6): 672-676.
42
De Vadder F, Kovatcheva-Datchary P, Zitoun C, et al. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis[J]. Cell Metab, 2016, 24 (1): 151-157.
43
Psichas A, Sleeth ML, Murphy KG, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents[J]. Int J Obes (Lond), 2015, 39 (3): 424-429.
44
Canani RB, Costanzo MD, Leone L, et al. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases[J]. World J Gastroenterol, 2011, 17 (12): 1519-1528.
45
Yamada T, Shimizu K, Ogura H, et al. Rapid and sustained long-term decrease of fecal short-chain fatty acids in critically ill patients with systemic inflammatory response syndrome[J]. JPEN J Parenter Enteral Nutr, 2015, 39 (5): 569-577.
46
Metges CC. Contribution of microbial amino acids to amino acid homeostasis of the host[J]. J Nutr, 2000, 130 (7): 1857S-1864S.
47
Walser M, Bodenlos LJ. Urea metabolism in man[J]. J Clin Invest, 1959, 38 (9): 1617-1626.
48
Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci U S A, 2004, 101 (44): 15718-15723.
49
Janssen AW, Kersten S. Potential mediators linking gut bacteria to metabolic health: a critical view[J]. J Physiol, 2017, 595 (2): 477-487.
50
Goldberg IJ, Eckel RH, Abumrad NA. Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways[J]. J Lipid Res, 2009, 50 (Suppl): S86-S90.
51
den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. J Lipid Res, 2013, 54 (9): 2325-2340.
52
Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, et al. The role of the gut microbiota in bile acid metabolism[J]. Ann Hepatol, 2017, 16 (Suppl 1: s3-105): s15-s20.
53
Yang Y, Zhang J. Bile acid metabolism and circadian rhythms[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 319 (5): G549-G563.
54
Caffaratti C, Plazy C, Mery G, et al. What we know so far about the metabolite-mediated microbiota-intestinal immunity dialogue and how to hear the sound of this crosstalk[J]. Metabolites, 2021, 11 (6): 406.
55
Horvatits T, Drolz A, Rutter K, et al. Circulating bile acids predict outcome in critically ill patients[J]. Ann Intensive Care, 2017, 7 (1): 48.
56
Chiang J, Ferrell JM. Bile acids as metabolic regulators and nutrient sensors[J]. Annu Rev Nutr, 2019 (39): 175-200.
57
Vandenplas Y, De Greef E, Veereman G. Prebiotics in infant formula[J]. Gut Microbes, 2014, 5 (6): 681-687.
58
Béghin L, Tims S, Roelofs M, et al. Fermented infant formula (with Bifidobacterium breve C50 and Streptococcus thermophilus O65) with prebiotic oligosaccharides is safe and modulates the gut microbiota towards a microbiota closer to that of breastfed infants[J]. Clin Nutr, 2021, 40 (3): 778-787.
59
Majid HA, Cole J, Emery PW, et al. Additional oligofructose/inulin does not increase faecal bifidobacteria in critically ill patients receiving enteral nutrition: a randomised controlled trial[J]. Clin Nutr, 2014, 33 (6): 966-972.
60
Collins MD, Gibson GR. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut[J]. Am J Clin Nutr, 1999, 69 (5): 1052S-1057S.
61
Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era[J]. Gastroenterology, 2009, 136 (6): 2015-2031.
62
Wischmeyer PE, McDonald D, Knight R. Role of the microbiome, probiotics, and 'dysbiosis therapy' in critical illness[J]. Curr Opin Crit Care, 2016, 22 (4): 347-353.
63
Khailova L, Petrie B, Baird CH, et al. Lactobacillus rhamnosus GG and Bifidobacterium longum attenuate lung injury and inflammatory response in experimental sepsis[J]. PLoS One, 2014, 9 (5): e97861.
64
Boyle RJ, Robins-Browne RM, Tang ML. Probiotic use in clinical practice: what are the risks?[J]. Am J Clin Nutr, 2006, 83 (6): 1256-1264; quiz 1446-1447.
65
Srinivasan R, Meyer R, Padmanabhan R, et al. Clinical safety of Lactobacillus casei shirota as a probiotic in critically ill children[J]. J Pediatr Gastroenterol Nutr, 2006, 42 (2): 171-173.
66
Goodman C, Keating G, Georgousopoulou E, et al. Probiotics for the prevention of antibiotic-associated diarrhoea: a systematic review and meta-analysis[J]. BMJ Open, 2021, 11 (8): e043054.
67
Simakachorn N, Bibiloni R, Yimyaem P, et al. Tolerance, safety, and effect on the faecal microbiota of an enteral formula supplemented with pre- and probiotics in critically ill children[J]. J Pediatr Gastroenterol Nutr, 2011, 53 (2): 174-181.
68
Shimizu K, Yamada T, Ogura H, et al. Synbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis: a randomized controlled trial[J]. Crit Care, 2018, 22 (1): 239.
69
Xu W, Judge MP, Maas K, et al. Systematic review of the effect of enteral feeding on gut microbiota in preterm infants[J]. J Obstet Gynecol Neonatal Nurs, 2018, 47 (3): 451-463.
70
Cammarota G, Ianiro G, Bibbò S, et al. Fecal microbiota transplantation: a new old kid on the block for the management of gut microbiota-related disease[J]. J Clin Gastroenterol, 2014, 48 (Suppl 1): S80-S84.
71
Klingensmith NJ, Coopersmith CM. Fecal microbiota transplantation for multiple organ dysfunction syndrome[J]. Crit Care, 2016, 20 (1): 398.
72
McClave SA, Patel J, Bhutiani N. Should fecal microbial transplantation be used in the ICU?[J]. Curr Opin Crit Care, 2018, 24 (2): 105-111.
73
Dai M, Liu Y, Chen W, et al. Rescue fecal microbiota transplantation for antibiotic-associated diarrhea in critically ill patients[J]. Crit Care, 2019, 23 (1): 324.
74
McDonald LC, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA)[J]. Clin Infect Dis, 2018, 66 (7): e1-e48.
75
Schneider KM, Wirtz TH, Kroy D, et al. Successful fecal microbiota transplantation in a patient with severe complicated Clostridium difficile infection after liver transplantation[J]. Case Rep Gastroenterol, 2018, 12 (1): 76-84.
76
Limketkai BN, Hendler S, Ting PS, et al. Fecal microbiota transplantation for the critically ill patient[J]. Nutr Clin Pract, 2019, 34 (1): 73-79.
77
Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9 system: a new-fangled dawn in gene editing[J]. Life Sci, 2019 (232): 116636.
78
Guo CJ, Allen BM, Hiam KJ, et al. Depletion of microbiome-derived molecules in the host using Clostridium genetics[J]. Science, 2019, 366 (6471): eaav1282.
79
Funabashi M, Grove TL, Wang M, et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome[J]. Nature, 2020, 582 (7813): 566-570.
No related articles found!
阅读次数
全文


摘要