1 |
Manly JJ, Tang MX, Schupf N, et al. Frequency and course of mild cognitive impairment in a multiethnic community[J]. Ann Neurol, 2008, 63 (4): 494-506.
|
2 |
Nie H, Xu Y, Liu B, et al. The prevalence of mild cognitive impairment about elderly population in China: a meta-analysis[J]. Int J Geriatr Psychiatry, 2011, 26 (6): 558-563.
|
3 |
Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission[J]. Lancet, 2020, 396 (10248): 413-446.
|
4 |
Jia L, Quan M, Fu Y, et al. Dementia in China: epidemiology, clinical management, and research advances[J]. Lancet Neurol, 2020, 19 (1): 81-92.
|
5 |
李鹏,林萍.痴呆患者主要照料者焦虑抑郁状态的相关危险因素分析[J/CD].中华危重症医学杂志(电子版),2016,9(6):404-406.
|
6 |
张铁松,黄思聪,潘剑威.补阳还五汤促缺血性脑卒中后血管生成机制的研究进展[J/CD].中华危重症医学杂志(电子版),2021,14(6):507-511.
|
7 |
Johnson RJ, Gomez-Pinilla F, Nagel M, et al. Cerebral fructose metabolism as a potential mechanism driving Alzheimer's disease[J]. Front Aging Neurosci, 2020 (12): 560865.
|
8 |
Johnson RJ, Stenvinkel P, Andrews P, et al. Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts[J]. J Intern Med, 2020, 287 (3): 252-262.
|
9 |
Lanaspa MA, Andres-Hernando A, Orlicky DJ, et al. Ketohexokinase C blockade ameliorates fructose-induced metabolic dysfunction in fructose-sensitive mice[J]. J Clin Invest, 2018, 128 (6): 2226-2238.
|
10 |
Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity[J]. Am J Clin Nutr, 2004, 79 (4): 537-543.
|
11 |
Herman MA, Samuel VT. The sweet path to metabolic demise: fructose and lipid synthesis[J]. Trends Endocrinol Metab, 2016, 27 (10): 719-730.
|
12 |
Mirtschink P, Krishnan J, Grimm F, et al. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease[J]. Nature, 2015, 522 (7557): 444-449.
|
13 |
Nakagawa T, Johnson RJ, Andres-Hernando A, et al. Fructose production and metabolism in the kidney[J]. J Am Soc Nephrol, 2020, 31 (5): 898-906.
|
14 |
Krause N, Wegner A. Fructose metabolism in cancer[J]. Cells, 2020, 9 (12): 2635.
|
15 |
Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus[J]. Front Pharmacol, 2012 (3): 87.
|
16 |
Thakur S, Gupta SK, Ali V, et al. Aldose reductase: a cause and a potential target for the treatment of diabetic complications[J]. Arch Pharm Res, 2021, 44 (7): 655-667.
|
17 |
Dienel GA. Brain glucose metabolism: integration of energetics with function[J]. Physiol Rev, 2019, 99 (1): 949-1045.
|
18 |
Yan LJ. Redox imbalance stress in diabetes mellitus: role of the polyol pathway[J]. Animal Model Exp Med, 2018, 1 (1): 7-13.
|
19 |
Andres-Hernando A, Johnson RJ, Lanaspa MA. Endogenous fructose production: what do we know and how relevant is it?[J]. Curr Opin Clin Nutr Metab Care, 2019, 22 (4): 289-294.
|
20 |
Hwang JJ, Jiang L, Hamza M, et al. The human brain produces fructose from glucose[J]. JCI Insight, 2017, 2 (4): e90508.
|
21 |
Hwang JJ, Johnson A, Cline G, et al. Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women[J]. PLoS One, 2015, 10 (6): e0128582.
|
22 |
Lanaspa MA, Ishimoto T, Li N, et al. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome[J]. Nat Commun, 2013 (4): 2434.
|
23 |
Ishimoto T, Lanaspa MA, Le MT, et al. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice[J]. Proc Natl Acad Sci U S A, 2012, 109 (11): 4320-4325.
|
24 |
Caliceti C, Calabria D, Roda A, et al. Fructose intake, serum uric acid, and cardiometabolic disorders: a critical review[J]. Nutrients, 2017, 9 (4): 395.
|
25 |
Jegatheesan P, De Bandt JP. Fructose and NAFLD: the multifaceted aspects of fructose metabolism[J]. Nutrients, 2017, 9 (3): 230.
|
26 |
Mastrocola R, Nigro D, Cento AS, et al. High-fructose intake as risk factor for neurodegeneration: key role for carboxy methyllysine accumulation in mice hippocampal neurons[J]. Neurobiol Dis, 2016 (89): 65-75.
|
27 |
Maarman GJ, Andrew BM, Blackhurst DM, et al. Melatonin protects against uric acid-induced mitochondrial dysfunction, oxidative stress, and triglyceride accumulation in C2C12 myotubes[J]. J Appl Physiol (1985), 2017, 122 (4): 1003-1010.
|
28 |
Johnson RJ, Nakagawa T, Sanchez-Lozada LG, et al. Sugar, uric acid, and the etiology of diabetes and obesity[J]. Diabetes, 2013, 62 (10): 3307-3315.
|
29 |
Afsar B, Elsurer R, Covic A, et al. Relationship between uric acid and subtle cognitive dysfunction in chronic kidney disease[J]. Am J Nephrol, 2011, 34 (1): 49-54.
|
30 |
Verhaaren BF, Vernooij MW, Dehghan A, et al. The relation of uric acid to brain atrophy and cognition: the Rotterdam Scan Study[J]. Neuroepidemiology, 2013, 41 (1): 29-34.
|
31 |
Aslan HE, Beydemir S. Phenolic compounds: the inhibition effect on polyol pathway enzymes[J]. Chem Biol Interact, 2017 (266): 47-55.
|
32 |
Yabe E, Yamakawa S, Tomari HS, et al. Fructose-induced cognitive dysfunction is associated with increased oxidative stress in the rat brains[J]. Journal of Biosciences and Medicines, 2018, 6 (10): 52-64.
|
33 |
Li JM, Ge CX, Xu MX, et al. Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose-fed rats[J]. Mol Nutr Food Res, 2015, 59 (2): 189-202.
|
34 |
Xu MX, Yu R, Shao LF, et al. Up-regulated fractalkine (FKN) and its receptor CX3CR1 are involved in fructose-induced neuroinflammation: suppression by curcumin[J]. Brain Behav Immun, 2016 (58): 69-81.
|
35 |
Spagnuolo MS, Iossa S, Cigliano L. Sweet but bitter: focus on fructose impact on brain function in rodent models[J]. Nutrients, 2020, 13 (1): 1.
|
36 |
Xu J, Begley P, Church SJ, et al. Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer's disease: metabolic basis for dementia[J]. Sci Rep, 2016 (6): 27524.
|
37 |
Biessels GJ, Strachan MW, Visseren FL, et al. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions[J]. Lancet Diabetes Endocrinol, 2014, 2 (3): 246-255.
|
38 |
Taskinen MR, Packard CJ, Borén J. Dietary fructose and the metabolic syndrome[J]. Nutrients, 2019, 11 (9): 1987.
|
39 |
Kouvari M, D'Cunha NM, Travica N, et al. Metabolic syndrome, cognitive impairment and the role of diet: a narrative review[J]. Nutrients, 2022, 14 (2): 333.
|
40 |
Cordner ZA, Tamashiro KL. Effects of high-fat diet exposure on learning & memory[J]. Physiol Behav, 2015, 152 (Pt B): 363-371.
|
41 |
Meng Q, Ying Z, Noble E, et al. Systems nutrigenomics reveals brain gene networks linking metabolic and brain disorders[J]. EBioMedicine, 2016 (7): 157-166.
|
42 |
Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention[J]. J Lipid Res, 2017, 58 (11): 2083-2101.
|
43 |
Simonetto M, Infante M, Sacco RL, et al. A novel anti-inflammatory role of omega-3 PUFAs in prevention and treatment of atherosclerosis and vascular cognitive impairment and dementia[J]. Nutrients, 2019, 11 (10): 2279.
|
44 |
Agrawal R, Gomez-Pinilla F. 'Metabolic syndrome' in the brain: deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition[J]. J Physiol, 2012, 590 (10): 2485-2499.
|
45 |
Li JM, Yu R, Zhang LP, et al. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short-chain fatty acids[J]. Microbiome, 2019, 7 (1): 98.
|