切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2023, Vol. 16 ›› Issue (02) : 149 -153. doi: 10.3877/cma.j.issn.1674-6880.2023.02.011

综述

果糖代谢参与认知功能障碍的研究进展
杜梦宇, 李岩松, 王强()   
  1. 710061 西安,西安交通大学第一附属医院麻醉手术部&脑科学研究中心
  • 收稿日期:2022-06-16 出版日期:2023-04-30
  • 通信作者: 王强
  • 基金资助:
    国家自然科学基金项目(81801899、81974540); 陕西省自然科学基金项目(2022JQ-819)
  • Received:2022-06-16 Published:2023-04-30
引用本文:

杜梦宇, 李岩松, 王强. 果糖代谢参与认知功能障碍的研究进展[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 149-153.

认知功能障碍包括轻度认知障碍(mild cognitive impairment,MCI)和痴呆症,MCI患者发生痴呆的可能性是健康人群的2.8倍[1]。在中国,老年人MCI总患病率为12.7%,且患病率随着年龄的增长呈上升趋势[2]。全世界目前约有5 000万人罹患痴呆症,这一数字到2050年可能增加到1.52亿[3]。中国约950万人患有痴呆症,是世界上痴呆症患者最多的国家,占全世界痴呆症患者总数的25%左右。目前全球痴呆症年费用估计约为1万亿美元,预计到2030年将翻倍增长,而中国老年痴呆症的社会经济负担比世界平均水平更高[4],给社会和家庭带来沉重的负担[5-6]。遗憾的是,认知功能障碍发病机制尚不明确,缺乏有效防治手段。近年来,果糖在认知障碍中的作用逐渐引起关注,过量的果糖摄入会破坏大脑正常的新陈代谢和神经功能,可能会导致痴呆症的发生。此外,参与认知障碍的果糖,不仅可以来源于饮食,还可通过多元醇途径在脑内合成,且该通路的异常激活往往发生在患者疾病早期尚未出现临床症状之前[7]。因此,果糖代谢可能是认知功能障碍发生的关键机制。本研究综述了果糖代谢与认知功能障碍的关系,阐述其研究进展及潜在研究方向。

1
Manly JJ, Tang MX, Schupf N, et al. Frequency and course of mild cognitive impairment in a multiethnic community[J]. Ann Neurol, 2008, 63 (4): 494-506.
2
Nie H, Xu Y, Liu B, et al. The prevalence of mild cognitive impairment about elderly population in China: a meta-analysis[J]. Int J Geriatr Psychiatry, 2011, 26 (6): 558-563.
3
Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission[J]. Lancet, 2020, 396 (10248): 413-446.
4
Jia L, Quan M, Fu Y, et al. Dementia in China: epidemiology, clinical management, and research advances[J]. Lancet Neurol, 2020, 19 (1): 81-92.
5
李鹏,林萍.痴呆患者主要照料者焦虑抑郁状态的相关危险因素分析[J/CD].中华危重症医学杂志(电子版)20169(6):404-406.
6
张铁松,黄思聪,潘剑威.补阳还五汤促缺血性脑卒中后血管生成机制的研究进展[J/CD].中华危重症医学杂志(电子版)202114(6):507-511.
7
Johnson RJ, Gomez-Pinilla F, Nagel M, et al. Cerebral fructose metabolism as a potential mechanism driving Alzheimer's disease[J]. Front Aging Neurosci, 2020 (12): 560865.
8
Johnson RJ, Stenvinkel P, Andrews P, et al. Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts[J]. J Intern Med, 2020, 287 (3): 252-262.
9
Lanaspa MA, Andres-Hernando A, Orlicky DJ, et al. Ketohexokinase C blockade ameliorates fructose-induced metabolic dysfunction in fructose-sensitive mice[J]. J Clin Invest, 2018, 128 (6): 2226-2238.
10
Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity[J]. Am J Clin Nutr, 2004, 79 (4): 537-543.
11
Herman MA, Samuel VT. The sweet path to metabolic demise: fructose and lipid synthesis[J]. Trends Endocrinol Metab, 2016, 27 (10): 719-730.
12
Mirtschink P, Krishnan J, Grimm F, et al. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease[J]. Nature, 2015, 522 (7557): 444-449.
13
Nakagawa T, Johnson RJ, Andres-Hernando A, et al. Fructose production and metabolism in the kidney[J]. J Am Soc Nephrol, 2020, 31 (5): 898-906.
14
Krause N, Wegner A. Fructose metabolism in cancer[J]. Cells, 2020, 9 (12): 2635.
15
Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus[J]. Front Pharmacol, 2012 (3): 87.
16
Thakur S, Gupta SK, Ali V, et al. Aldose reductase: a cause and a potential target for the treatment of diabetic complications[J]. Arch Pharm Res, 2021, 44 (7): 655-667.
17
Dienel GA. Brain glucose metabolism: integration of energetics with function[J]. Physiol Rev, 2019, 99 (1): 949-1045.
18
Yan LJ. Redox imbalance stress in diabetes mellitus: role of the polyol pathway[J]. Animal Model Exp Med, 2018, 1 (1): 7-13.
19
Andres-Hernando A, Johnson RJ, Lanaspa MA. Endogenous fructose production: what do we know and how relevant is it?[J]. Curr Opin Clin Nutr Metab Care, 2019, 22 (4): 289-294.
20
Hwang JJ, Jiang L, Hamza M, et al. The human brain produces fructose from glucose[J]. JCI Insight, 2017, 2 (4): e90508.
21
Hwang JJ, Johnson A, Cline G, et al. Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women[J]. PLoS One, 2015, 10 (6): e0128582.
22
Lanaspa MA, Ishimoto T, Li N, et al. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome[J]. Nat Commun, 2013 (4): 2434.
23
Ishimoto T, Lanaspa MA, Le MT, et al. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice[J]. Proc Natl Acad Sci U S A, 2012, 109 (11): 4320-4325.
24
Caliceti C, Calabria D, Roda A, et al. Fructose intake, serum uric acid, and cardiometabolic disorders: a critical review[J]. Nutrients, 2017, 9 (4): 395.
25
Jegatheesan P, De Bandt JP. Fructose and NAFLD: the multifaceted aspects of fructose metabolism[J]. Nutrients, 2017, 9 (3): 230.
26
Mastrocola R, Nigro D, Cento AS, et al. High-fructose intake as risk factor for neurodegeneration: key role for carboxy methyllysine accumulation in mice hippocampal neurons[J]. Neurobiol Dis, 2016 (89): 65-75.
27
Maarman GJ, Andrew BM, Blackhurst DM, et al. Melatonin protects against uric acid-induced mitochondrial dysfunction, oxidative stress, and triglyceride accumulation in C2C12 myotubes[J]. J Appl Physiol (1985), 2017, 122 (4): 1003-1010.
28
Johnson RJ, Nakagawa T, Sanchez-Lozada LG, et al. Sugar, uric acid, and the etiology of diabetes and obesity[J]. Diabetes, 2013, 62 (10): 3307-3315.
29
Afsar B, Elsurer R, Covic A, et al. Relationship between uric acid and subtle cognitive dysfunction in chronic kidney disease[J]. Am J Nephrol, 2011, 34 (1): 49-54.
30
Verhaaren BF, Vernooij MW, Dehghan A, et al. The relation of uric acid to brain atrophy and cognition: the Rotterdam Scan Study[J]. Neuroepidemiology, 2013, 41 (1): 29-34.
31
Aslan HE, Beydemir S. Phenolic compounds: the inhibition effect on polyol pathway enzymes[J]. Chem Biol Interact, 2017 (266): 47-55.
32
Yabe E, Yamakawa S, Tomari HS, et al. Fructose-induced cognitive dysfunction is associated with increased oxidative stress in the rat brains[J]. Journal of Biosciences and Medicines, 2018, 6 (10): 52-64.
33
Li JM, Ge CX, Xu MX, et al. Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose-fed rats[J]. Mol Nutr Food Res, 2015, 59 (2): 189-202.
34
Xu MX, Yu R, Shao LF, et al. Up-regulated fractalkine (FKN) and its receptor CX3CR1 are involved in fructose-induced neuroinflammation: suppression by curcumin[J]. Brain Behav Immun, 2016 (58): 69-81.
35
Spagnuolo MS, Iossa S, Cigliano L. Sweet but bitter: focus on fructose impact on brain function in rodent models[J]. Nutrients, 2020, 13 (1): 1.
36
Xu J, Begley P, Church SJ, et al. Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer's disease: metabolic basis for dementia[J]. Sci Rep, 2016 (6): 27524.
37
Biessels GJ, Strachan MW, Visseren FL, et al. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions[J]. Lancet Diabetes Endocrinol, 2014, 2 (3): 246-255.
38
Taskinen MR, Packard CJ, Borén J. Dietary fructose and the metabolic syndrome[J]. Nutrients, 2019, 11 (9): 1987.
39
Kouvari M, D'Cunha NM, Travica N, et al. Metabolic syndrome, cognitive impairment and the role of diet: a narrative review[J]. Nutrients, 2022, 14 (2): 333.
40
Cordner ZA, Tamashiro KL. Effects of high-fat diet exposure on learning & memory[J]. Physiol Behav, 2015, 152 (Pt B): 363-371.
41
Meng Q, Ying Z, Noble E, et al. Systems nutrigenomics reveals brain gene networks linking metabolic and brain disorders[J]. EBioMedicine, 2016 (7): 157-166.
42
Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention[J]. J Lipid Res, 2017, 58 (11): 2083-2101.
43
Simonetto M, Infante M, Sacco RL, et al. A novel anti-inflammatory role of omega-3 PUFAs in prevention and treatment of atherosclerosis and vascular cognitive impairment and dementia[J]. Nutrients, 2019, 11 (10): 2279.
44
Agrawal R, Gomez-Pinilla F. 'Metabolic syndrome' in the brain: deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition[J]. J Physiol, 2012, 590 (10): 2485-2499.
45
Li JM, Yu R, Zhang LP, et al. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short-chain fatty acids[J]. Microbiome, 2019, 7 (1): 98.
No related articles found!
阅读次数
全文


摘要