1 |
Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42 (4): 245-254.
|
2 |
Feng S, Fox D, Man SM. Mechanisms of gasdermin family members in inflammasome signaling and cell death[J]. J Mol Biol, 2018, 430 (18 Pt B): 3068-3080.
|
3 |
Evavold CL, Kagan JC. Defying death: the (w)hole truth about the fate of GSDMD pores[J]. Immunity, 2019, 50 (1): 15-17.
|
4 |
Moreno-Moral A, Bagnati M, Koturan S, et al. Changes in macrophage transcriptome associate with systemic sclerosis and mediate GSDMA contribution to disease risk[J]. Ann Rheum Dis, 2018, 77 (4): 596-601.
|
5 |
Gatineau-Sailliant S, Glisovic S, Gagné V, et al. Impact of DARC, GSDMA and CXCL2 polymorphisms on induction toxicity in children with acute lymphoblastic leukemia: a complementary study[J]. Leuk Res, 2019 (86): 106228.
|
6 |
Madore AM, Pain L, Boucher-Lafleur AM, et al. Asthma-associated polymorphisms in 17q12-21 locus modulate methylation and gene expression of GSDMA in naive CD4+ T cells[J]. J Genet Genomics, 2020, 47 (3): 171-174.
|
7 |
Li L, Li Y, Bai Y. Role of GSDMB in pyroptosis and cancer[J]. Cancer Manag Res, 2020 (12): 3033-3043.
|
8 |
Miguchi M, Hinoi T, Shimomura M, et al. Gasdermin C is upregulated by inactivation of transforming growth factor β receptor type Ⅱ in the presence of mutated Apc, promoting colorectal cancer proliferation[J]. PLoS One, 2016, 11 (11): e0166422.
|
9 |
Li H, Zhao XK, Cheng YJ, et al. Gasdermin D-mediated hepatocyte pyroptosis expands inflammatory responses that aggravate acute liver failure by upregulating monocyte chemotactic protein 1/CC chemokine receptor-2 to recruit macrophages[J]. World J Gastroenterol, 2019, 25 (44): 6527-6540.
|
10 |
Tonnus W, Linkermann A. Gasdermin D and pyroptosis in acute kidney injury[J]. Kidney Int, 2019, 96 (5): 1061-1063.
|
11 |
Frank MG, Baratta MV, Zhang K, et al. Acute stress induces the rapid and transient induction of caspase-1, gasdermin D and release of constitutive IL-1β protein in dorsal hippocampus[J]. Brain Behav Immun, 2020 (90): 70-80.
|
12 |
Humphries F, Shmuel-Galia L, Ketelut-Carneiro N, et al. Succination inactivates gasdermin D and blocks pyroptosis[J]. Science, 2020, 369 (6511): 1633-1637.
|
13 |
He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J]. Cell Res, 2015, 25 (12): 1285-1298.
|
14 |
Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J]. Nature, 2015, 526 (7575): 666-671.
|
15 |
Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis[J]. Trends Cell Biol, 2017, 27 (9): 673-684.
|
16 |
Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526 (7575): 660-665.
|
17 |
Sborgi L, Rühl S, Mulvihill E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death[J]. EMBO J, 2016, 35 (16): 1766-1778.
|
18 |
Linder A, Bauernfried S, Cheng Y, et al. CARD8 inflammasome activation triggers pyroptosis in human T cells[J]. EMBO J, 2020, 39 (19): e105071.
|
19 |
He F, Zheng G, Hou J, et al. N-acetylcysteine alleviates post-resuscitation myocardial dysfunction and improves survival outcomes via partly inhibiting NLRP3 inflammasome induced-pyroptosis[J]. J Inflamm (Lond), 2020 (17): 25.
|
20 |
Yi YS. Caspase-11 non-canonical inflammasome: emerging activator and regulator of infection-mediated inflammatory responses[J]. Int J Mol Sci, 2020, 21 (8): 2736.
|
21 |
Accarias S, Lugo-Villarino G, Foucras G, et al. Pyroptosis of resident macrophages differentially orchestrates inflammatory responses to Staphylococcus aureus in resistant and susceptible mice[J]. Eur J Immunol, 2015, 45 (3): 794-806.
|
22 |
Sha W, Mitoma H, Hanabuchi S, et al. Human NLRP3 inflammasome senses multiple types of bacterial RNAs[J]. Proc Natl Acad Sci U S A, 2014, 111 (45): 16059-16064.
|
23 |
Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547 (7661): 99-103.
|
24 |
田涛,李幼生.脓毒症相关肝损害研究进展[J/CD].中华危重症医学杂志(电子版),2021,14(2):165-167.
|
25 |
张彬,杨宗斌,李祯,等.脓毒症急性肺损伤模型中肺组织细胞焦亡与大麻素2型受体的相关性分析[J].中华急诊医学杂志,2022,31(2):185-190.
|
26 |
Chadha S, Behl T, Bungau S, et al. Mechanistic insights into the role of pyroptosis in rheumatoid arthritis[J]. Curr Res Transl Med, 2020, 68 (4): 151-158.
|
27 |
Zhen Y, Zhang H. NLRP3 inflammasome and inflammatory bowel disease[J]. Front Immunol, 2019 (10): 276.
|
28 |
Wang H, Ma YC. Role of NLRP1 and NLRP3 inflammasome signaling pathways in the immune mechanism of inflammatory bowel disease in children[J]. Zhongguo Dang Dai Er Ke Za Zhi, 2020, 22 (8): 854-859.
|
29 |
Zhang C, Qin J, Zhang S, et al. ADP/P2Y1 aggravates inflammatory bowel disease through ERK5-mediated NLRP3 inflammasome activation[J]. Mucosal Immunol, 2020, 13 (6): 931-945.
|
30 |
De Jong HK, Koh GC, van Lieshout MH, et al. Limited role for ASC and NLRP3 during in vivo Salmonella Typhimurium infection[J]. BMC Immunol, 2014 (15): 30.
|
31 |
Magna M, Pisetsky DS. The role of cell death in the pathogenesis of SLE: is pyroptosis the missing link?[J]. Scand J Immunol, 2015, 82 (3): 218-224.
|
32 |
Ding S, Xu S, Ma Y, et al. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes[J]. Biomolecules, 2019, 9 (12): 850.
|
33 |
Yu ZW, Zhang J, Li X, et al. A new research hot spot: the role of NLRP3 inflammasome activation, a key step in pyroptosis, in diabetes and diabetic complications[J]. Life Sci, 2020 (240): 117138.
|
34 |
Gu C, Draga D, Zhou C, et al. miR-590-3p inhibits pyroptosis in diabetic retinopathy by targeting NLRP1 and inactivating the NOX4 signaling pathway[J]. Invest Ophthalmol Vis Sci, 2019, 60 (13): 4215-4223.
|
35 |
Xu B, Jiang M, Chu Y, et al. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice[J]. J Hepatol, 2018, 68 (4): 773-782.
|
36 |
Rashidi M, Simpson DS, Hempel A, et al. The pyroptotic cell death effector gasdermin D is activated by gout-associated uric acid crystals but is dispensable for cell death and IL-1β release[J]. J Immunol, 2019, 203 (3): 736-748.
|
37 |
Chen L, Weng B, Li H, et al. A thiopyran derivative with low murine toxicity with therapeutic potential on lung cancer acting through a NF-κB mediated apoptosis-to-pyroptosis switch[J]. Apoptosis, 2019, 24 (1-2): 74-82.
|
38 |
Yu Q, Zhang M, Ying Q, et al. Decrease of AIM2 mediated by luteolin contributes to non-small cell lung cancer treatment[J]. Cell Death Dis, 2019, 10 (3): 218.
|
39 |
Sarhan J, Liu BC, Muendlein HI, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection[J]. Proc Natl Acad Sci U S A, 2018, 115 (46): E10888-E10897.
|
40 |
Senju H, Kumagai A, Nakamura Y, et al. Effect of IL-18 on the expansion and phenotype of human natural killer cells: application to cancer immunotherapy[J]. Int J Biol Sci, 2018, 14 (3): 331-340.
|
41 |
Pizato N, Luzete BC, Kiffer LFMV, et al. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells[J]. Sci Rep, 2018, 8 (1): 1952.
|
42 |
Zhang R, Chen J, Mao L, et al. Nobiletin triggers reactive oxygen species-mediated pyroptosis through regulating autophagy in ovarian cancer cells[J]. J Agric Food Chem, 2020, 68 (5): 1326-1336.
|
43 |
Wu M, Wang Y, Yang D, et al. A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma[J]. EBioMedicine, 2019 (41): 244-255.
|
44 |
Yu J, Li S, Qi J, et al. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells[J]. Cell Death Dis, 2019, 10 (3): 193.
|
45 |
Wang Y, Yin B, Li D, et al. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer[J]. Biochem Biophys Res Commun, 2018, 495 (1): 1418-1425.
|