切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2022, Vol. 15 ›› Issue (06) : 495 -499. doi: 10.3877/cma.j.issn.1674-6880.2022.06.013

综述

脓毒症患者铁代谢紊乱的研究进展
刘秦杰1, 吴婕2, 吴秀文1, 任建安1,()   
  1. 1. 210002 南京,南京大学医学院附属金陵医院全军普通外科研究所
    2. 210002 南京,南京医科大学附属明基医院普通外科
  • 收稿日期:2022-03-31 出版日期:2022-12-31
  • 通信作者: 任建安
  • 基金资助:
    国家自然科学基金项目(81772052); 江苏省医学杰出人才(JCRCB2016006); 江苏省333高层次人才培养工程(BRA2019011)
  • Received:2022-03-31 Published:2022-12-31
引用本文:

刘秦杰, 吴婕, 吴秀文, 任建安. 脓毒症患者铁代谢紊乱的研究进展[J]. 中华危重症医学杂志(电子版), 2022, 15(06): 495-499.

脓毒症是由宿主对炎症反应失调引起的可导致多器官功能障碍甚至死亡的一类疾病[1]。近年来,研究发现脓毒症时机体铁代谢失调对疾病进展起到重要作用[2]。铁是生物体核酸合成、能量产生及免疫功能维持的重要元素,同时也是病原体生长所必须的营养要素。感染时,机体通过降低血清铁浓度来限制其被病原菌所掠夺,即"营养免疫"途径[3]。但是,长时间或过度营养免疫也会导致胞内铁增多,从而促进铁的酶活性和强氧化作用,加剧炎症,触发细胞死亡并最终导致多器官损伤。本综述将讨论脓毒症时铁代谢的最新进展,阐明脓毒症患者铁紊乱的影响,总结新型铁靶向药物的临床转化应用,为脓毒症提供新的治疗选择。

1
Wu J, Ren J, Liu Q, et al. Effects of changes in the levels of damage-associated molecular patterns following continuous veno-venous hemofiltration therapy on outcomes in acute kidney injury patients with sepsis[J]. Front Immunol, 2018 (9): 3052.
2
Weis S, Carlos AR, Moita MR, et al. Metabolic adaptation establishes disease tolerance to sepsis[J]. Cell, 2017, 169 (7): 1263-1275.e14.
3
姜毅,龚平.铁代谢紊乱与脓毒症[J].中华急诊医学杂志201827(2):229-232.
4
Pishchany G, Skaar EP. Taste for blood: hemoglobin as a nutrient source for pathogens[J]. PLoS Pathog, 2012, 8 (3): e1002535.
5
Aydemir TB, Cousins RJ. The multiple faces of the metal transporter ZIP14 (SLC39A14)[J]. J Nutr, 2018, 148 (2): 174-184.
6
牟迎东,张琳琳,张培荣.急性肾损伤早期生物学标志物研究的新进展[J/CD].中华危重症医学杂志(电子版)20158(3):191-196.
7
Cui Y, Xiong X, Ren Y, et al. CD163 as a valuable diagnostic and prognostic biomarker of sepsis-associated hemophagocytic lymphohistiocytosis in critically ill children[J]. Pediatr Blood Cancer, 2019, 66 (10): e27909.
8
Boshuizen M, Binnekade JM, Nota B, et al. Iron metabolism in critically ill patients developing anemia of inflammation: a case control study[J]. Ann Intensive Care, 2018, 8 (1): 56.
9
Zarjou A, Black LM, McCullough KR, et al. Ferritin light chain confers protection against sepsis-induced inflammation and organ injury[J]. Front Immunol, 2019 (10): 131.
10
Pham CG, Bubici C, Zazzeroni F, et al. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species[J]. Cell, 2004, 119 (4): 529-542.
11
Li N, Wang W, Zhou H, et al. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury[J]. Free Radic Biol Med, 2020 (160): 303-318.
12
Pandur E, Varga E, Tamási K, et al. Effect of inflammatory mediators lipopolysaccharide and lipoteichoic acid on iron metabolism of differentiated SH-SY5Y cells alters in the presence of BV-2 microglia[J]. Int J Mol Sci, 2018, 20 (1): 17.
13
Truman-Rosentsvit M, Berenbaum D, Spektor L, et al. Ferritin is secreted via 2 distinct nonclassical vesicular pathways[J]. Blood, 2018, 131 (3): 342-352.
14
Wang D, Yu S, Zhang Y, et al. Caspse-11-GSDMD pathway is required for serum ferritin secretion in sepsis[J]. Clin Immunol, 2019 (205): 148-152.
15
Riedelberger M, Penninger P, Tscherner M, et al. Type Ⅰ interferon response dysregulates host iron homeostasis and enhances Candida glabrata infection[J]. Cell Host Microbe, 2020, 27 (3): 454-466.e8.
16
Rodriguez R, Jung CL, Gabayan V, et al. Hepcidin induction by pathogens and pathogen-derived molecules is strongly dependent on interleukin-6[J]. Infect Immun, 2014, 82 (2): 745-752.
17
Liu F, Rehmani I, Esaki S, et al. Pirin is an iron-dependent redox regulator of NF-κB[J]. Proc Natl Acad Sci U S A, 2013, 110 (24): 9722-9727.
18
Wang Z, Yin W, Zhu L, et al. Iron drives T helper cell pathogenicity by promoting RNA-binding protein PCBP1-mediated proinflammatory cytokine production[J]. Immunity, 2018, 49 (1): 80-92.e7.
19
Martins R, Maier J, Gorki AD, et al. Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions[J]. Nat Immunol, 2016, 17 (12): 1361-1372.
20
Ramos S, Carlos AR, Sundaram B, et al. Renal control of disease tolerance to malaria[J]. Proc Natl Acad Sci U S A, 2019, 116 (12): 5681-5686.
21
田涛,李幼生.脓毒症相关肝损害研究进展[J/CD].中华危重症医学杂志(电子版)202114(2):165-167.
22
Duvigneau JC, Piskernik C, Haindl S, et al. A novel endotoxin-induced pathway: upregulation of heme oxygenase 1, accumulation of free iron, and free iron-mediated mitochondrial dysfunction[J]. Lab Invest, 2008, 88 (1): 70-77.
23
Sivaprakasam S, Ristic B, Mudaliar N, et al. Hereditary hemochromatosis promotes colitis and colon cancer and causes bacterial dysbiosis in mice[J]. Biochem J, 2020, 477 (19): 3867-3883.
24
Deschemin JC, Mathieu JRR, Zumerle S, et al. Pulmonary iron homeostasis in hepcidin knockout mice[J]. Front Physiol, 2017 (8): 804.
25
Pretorius E, Vermeulen N, Bester J, et al. A novel method for assessing the role of iron and its functional chelation in fibrin fibril formation: the use of scanning electron microscopy[J]. Toxicol Mech Methods, 2013, 23 (5): 352-359.
26
Olonisakin TF, Suber T, Gonzalez-Ferrer S, et al. Stressed erythrophagocytosis induces immunosuppression during sepsis through heme-mediated STAT1 dysregulation[J]. J Clin Invest, 2021, 131 (1): e137468.
27
Tacke F, Nuraldeen R, Koch A, et al. Iron parameters determine the prognosis of critically ill patients[J]. Crit Care Med, 2016, 44 (6): 1049-1058.
28
Lan P, Pan KH, Wang SJ, et al. High serum iron level is associated with increased mortality in patients with sepsis[J]. Sci Rep, 2018, 8 (1): 11072.
29
Siddique A, Kowdley KV. Review article: the iron overload syndromes[J]. Aliment Pharmacol Ther, 2012, 35 (8): 876-893.
30
Dragset MS, Poce G, Alfonso S, et al. A novel antimycobacterial compound acts as an intracellular iron chelator[J]. Antimicrob Agents Chemother, 2015, 59 (4): 2256-2264.
31
Vlahakos D, Arkadopoulos N, Kostopanagiotou G, et al. Deferoxamine attenuates lipid peroxidation, blocks interleukin-6 production, ameliorates sepsis inflammatory response syndrome, and confers renoprotection after acute hepatic ischemia in pigs[J]. Artif Organs, 2012, 36 (4): 400-408.
32
Islam S, Jarosch S, Zhou J, et al. Anti-inflammatory and anti-bacterial effects of iron chelation in experimental sepsis[J]. J Surg Res, 2016, 200 (1): 266-273.
33
Morita T, Nakano D, Kitada K, et al. Chelation of dietary iron prevents iron accumulation and macrophage infiltration in the type Ⅰ diabetic kidney[J]. Eur J Pharmacol, 2015 (756): 85-91.
34
Remy KE, Cortés-Puch I, Solomon SB, et al. Haptoglobin improves shock, lung injury, and survival in canine pneumonia[J]. JCI Insight, 2018, 3 (18): e123013.
35
Yang H, Wang H, Wang Y, et al. The haptoglobin beta subunit sequesters HMGB1 toxicity in sterile and infectious inflammation[J]. J Intern Med, 2017, 282 (1): 76-93.
36
Larsen R, Gozzelino R, Jeney V, et al. A central role for free heme in the pathogenesis of severe sepsis[J]. Sci Transl Med, 2010, 2 (51): 51ra71.
No related articles found!
阅读次数
全文


摘要