1 |
Catalá A, Díaz M. Editorial: impact of lipid peroxidation on the physiology and pathophysiology of cell membranes[J]. Front Physiol, 2016 (7): 423.
|
2 |
Gaschler MM, Stockwell BR. Lipid peroxidation in cell death[J]. Biochem Biophys Res Commun, 2017, 482 (3): 419-425.
|
3 |
Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13 (1): 81-90.
|
4 |
Dixon SJ, Winter GE, Musavi LS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem Biol, 2015, 10 (7): 1604-1609.
|
5 |
Soupene E, Kuypers FA. Mammalian long-chain acyl-CoA synthetases[J]. Exp Biol Med (Maywood), 2008, 233 (5): 507-521.
|
6 |
Shindou H, Shimizu T. Acyl-CoA: lysophospholipid acyltransferases[J]. J Biol Chem, 2009, 284 (1): 1-5.
|
7 |
Zou Y, Li H, Graham ET, et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis[J]. Nat Chem Biol, 2020, 16 (3): 302-309.
|
8 |
Hao S, Liang B, Huang Q, et al. Metabolic networks in ferroptosis[J]. Oncol Lett, 2018, 15 (4): 5405-5411.
|
9 |
Bogdan AR, Miyazawa M, Hashimoto K, et al. Regulators of iron homeostasis: new players in metabolism, cell death, and disease[J]. Trends Biochem Sci, 2016, 41 (3): 274-286.
|
10 |
Winn NC, Volk KM, Hasty AH. Regulation of tissue iron homeostasis: the macrophage "ferrostat"[J]. JCI Insight, 2020, 5 (2): e132964.
|
11 |
Chen Y, Fan Z, Yang Y, et al. Iron metabolism and its contribution to cancer (Review)[J]. Int J Oncol, 2019, 54 (4): 1143-1154.
|
12 |
Zhang Y, Mikhael M, Xu D, et al. Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit[J]. Antioxid Redox Signal, 2010, 13 (7): 999-1009.
|
13 |
Kurz T, Eaton JW, Brunk UT. The role of lysosomes in iron metabolism and recycling[J]. Int J Biochem Cell Biol, 2011, 43 (12): 1686-1697.
|
14 |
Asano T, Komatsu M, Yamaguchi-Iwai Y, et al. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells[J]. Mol Cell Biol, 2011, 31 (10): 2040-2052.
|
15 |
Mancias JD, Wang X, Gygi SP, et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy[J]. Nature, 2014, 509 (7498): 105-109.
|
16 |
Zhou B, Liu J, Kang R, et al. Ferroptosis is a type of autophagy-dependent cell death[J]. Semin Cancer Biol, 2020 (66): 89-100.
|
17 |
Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12 (8): 1425-1428.
|
18 |
Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis[J]. Mol Aspects Med, 2009, 30 (1-2): 1-12.
|
19 |
Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172 (3): 409-422.e21.
|
20 |
Zhu J, Berisa M, Schworer S, et al. Transsulfuration activity can support cell growth upon extracellular cysteine limitation[J]. Cell Metab, 2019, 30 (5): 865-876.e5.
|
21 |
Koppula P, Zhang Y, Zhuang L, et al. Amino acid transporter SLC7A11 / xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer[J]. Cancer Commun (Lond), 2018, 38 (1): 12.
|
22 |
Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic Biol Med, 2019 (133): 144-152.
|
23 |
Sehm T, Fan Z, Ghoochani A, et al. Sulfasalazine impacts on ferroptotic cell death and alleviates the tumor microenvironment and glioma-induced brain edema[J]. Oncotarget, 2016, 7 (24): 36021-36033.
|
24 |
Lachaier E, Louandre C, Godin C, et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors[J]. Anticancer Res, 2014, 34 (11): 6417-6422.
|
25 |
Louandre C, Ezzoukhry Z, Godin C, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib[J]. Int J Cancer, 2013, 133 (7): 1732-1742.
|
26 |
Dixon SJ, Patel DN, Welsch M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis[J]. Elife, 2014 (3): e02523.
|
27 |
Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156 (1-2): 317-331.
|
28 |
Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation[J]. Trends Cell Biol, 2016, 6 (3): 165-176.
|
29 |
Friedmann Angeli JP, Conrad M. Selenium and GPX4, a vital symbiosis[J]. Free Radic Biol Med, 2018 (127): 153-159.
|
30 |
Mullen PJ, Yu R, Longo J, et al. The interplay between cell signalling and the mevalonate pathway in cancer[J]. Nat Rev Cancer, 2016, 16 (11): 718-731.
|
31 |
Hadian K. Ferroptosis suppressor protein 1 (FSP1) and coenzyme Q10 cooperatively suppress ferroptosis[J]. Biochemistry, 2020, 59 (5): 637-638.
|
32 |
Gao M, Monian P, Quadri N, et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015, 59 (2): 298-308.
|
33 |
Dar HH, Tyurina YY, Mikulska-Ruminska K, et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium[J]. J Clin Invest, 2018, 128 (10): 4639-4653.
|
34 |
Amaral EP, Costa DL, Namasivayam S, et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis[J]. J Exp Med, 2019, 216 (3): 556-570.
|
35 |
Gao M, Yi J, Zhu J, et al. Role of mitochondria in ferroptosis[J]. Mol Cell, 2019, 73 (2): 354-363.e3.
|
36 |
Matsushita M, Freigang S, Schneider C, et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection[J]. J Exp Med, 2015, 212 (4): 555-568.
|
37 |
孙雪东,严一核,褚韦韦,等.高迁移率族蛋白B1/Toll样受体4信号通路在脓毒症大鼠致急性肺损伤中的作用研究[J/CD].中华危重症医学杂志(电子版),2020,13(6):419-426.
|
38 |
Wen Q, Liu J, Kang R, et al. The release and activity of HMGB1 in ferroptosis[J]. Biochem Biophys Res Commun, 2019, 510 (2): 278-283.
|
39 |
Deng M, Tang Y, Li W, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis[J]. Immunity, 2018, 49 (4): 740-753.
|
40 |
Tang D, Wang H, Billiar TR, et al. Emerging mechanisms of immunocoagulation in sepsis and septic shock[J]. Trends Immunol, 2021, 42 (6): 508-522.
|
41 |
Duvigneau JC, Piskernik C, Haindl S, et al. A novel endotoxin-induced pathway: upregulation of heme oxygenase 1, accumulation of free iron, and free iron-mediated mitochondrial dysfunction[J]. Lab Invest, 2008, 88 (1): 70-77.
|
42 |
Sivaprakasam S, Ristic B, Mudaliar N, et al. Hereditary hemochromatosis promotes colitis and colon cancer and causes bacterial dysbiosis in mice[J]. Biochem J, 2020, 477 (19): 3867-3883.
|
43 |
Fang S, Zhuo Z, Yu X, et al. Oral administration of liquid iron preparation containing excess iron induces intestine and liver injury, impairs intestinal barrier function and alters the gut microbiota in rats[J]. J Trace Elem Med Biol, 2018 (47): 12-20.
|
44 |
Deschemin JC, Mathieu JRR, Zumerle S, et al. Pulmonary iron homeostasis in hepcidin knockout mice[J]. Front Physiol, 2017 (8): 804.
|
45 |
Pretorius E, Vermeulen N, Bester J, et al. A novel method for assessing the role of iron and its functional chelation in fibrin fibril formation: the use of scanning electron microscopy[J]. Toxicol Mech Methods, 2013, 23 (5): 352-359.
|
46 |
Wang C, Yuan W, Hu A, et al. Dexmedetomidine alleviated sepsis induced myocardial ferroptosis and septic heart injury[J]. Mol Med Rep, 2020, 22 (1): 175-184.
|
47 |
Li N, Wang W, Zhou H, et al. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury[J]. Free Radic Biol Med, 2020 (160): 303-318.
|