1 |
Behjani ZZ, Ai J, Soleimani M, et al. Human unrestricted somatic stem cells ameliorate sepsis-related acute lung injury in mice[J]. J Cel Physiol, 2019, 234 (8): 13942-13950.
|
2 |
Bernard GR, Artigas A, Brigham KL, et al. The American-European consensus conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination[J]. Am J Respir Crit Care Med, 1994, 149 (3 Pt 1): 818-824.
|
3 |
Park JH, Jeong SY, Choi AJ, et al. Lipopolysaccharide directly stimulates Th17 differentiation in vitro modulating phosphorylation of RelB and NF-κB1[J]. Immunol Lett, 2015, 165 (1): 10-19.
|
4 |
Janz DR, Ware LB. Biomarkers of ALI/ARDS: pathogenesis, discovery, and relevance to clinical trials[J]. Semin Respir Crit Care Med, 2013, 34 (4): 537-548.
|
5 |
He YQ, Zhou CC, Yu LY, et al. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms[J]. Pharmacol Res, 2021 (163): 105224.
|
6 |
Luh SP, Chiang CH. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS): the mechanism, present strategies and future perspectives of therapies[J]. J Zhejiang Univ Sci B, 2007, 8 (1): 60-69.
|
7 |
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019, 47 (D1): D607-D613.
|
8 |
胡伦阳,王宝丽,蒋勇,等.脂联素在急性肺损伤中的研究进展[J/CD].中华危重症医学杂志(电子版),2020,13(1):66-69.
|
9 |
Bayat B, Sachs UJ. Transfusion-related acute lung injury: an overview[J]. Curr Pharm Des, 2012, 18 (22): 3236-3240.
|
10 |
Li Y, Wang Q, Chen H, et al. Epidemiological features and risk factor analysis of children with acute lung injury[J]. World J Pediatr, 2012, 8 (1): 43-46.
|
11 |
Nanchal RS, Truwit JD. Recent advances in understanding and treating acute respiratory distress syndrome[J]. F1000Res, 2018 (7): F1000 Faculty Rev-1322.
|
12 |
Derwall M, Martin L, Rossaint R. The acute respiratory distress syndrome: pathophysiology, current clinical practice, and emerging therapies[J]. Expert Rev Respir Med, 2018, 12 (12): 1021-1029.
|
13 |
Sun HD, Liu YJ, Chen J, et al. The pivotal role of HIF-1α in lung inflammatory injury induced by septic mesenteric lymph[J]. Biomed Pharmacother, 2017 (91): 476-484.
|
14 |
Fang JF, Shih LY, Yuan KC, et al. Proteomic analysis of post-hemorrhagic shock mesenteric lymph[J]. Shock, 2010, 34 (3): 291-298.
|
15 |
Aziz M, Ode Y, Zhou M, et al. B-1a cells protect mice from sepsis-induced acute lung injury[J]. Mol Med, 2018, 24 (1): 26.
|
16 |
Ness TL, Hogaboam CM, Strieter RM, et al. Immunomodulatory role of CXCR2 during experimental septic peritonitis[J]. J Immunol, 2003, 171 (7): 3775-3784.
|
17 |
Chai YS, Chen YQ, Lin SH, et al. Curcumin regulates the differentiation of naive CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice[J]. Biomed Pharmacother, 2020 (125): 109946.
|
18 |
Sauler M, Zhang Y, Min JN, et al. Endothelial CD74 mediates macrophage migration inhibitory factor protection in hyperoxic lung injury[J]. FASEB J, 2015, 29 (5): 1940-1949.
|
19 |
Wang Z, Cook JR. IRTA1 and MNDA expression in marginal zone lymphoma: utility in differential diagnosis and implications for classification[J]. Am J Clin Pathol, 2019, 151 (3): 337-343.
|
20 |
Bottardi S, Guieze R, Bourgoin V, et al. MNDA controls the expression of MCL-1 and BCL-2 in chronic lymphocytic leukemia cells[J]. Exp Hematol, 2020 (88): 68-82.e5.
|
21 |
Tan C, Gurien SD, Royster W, et al. Extracellular CIRP induces inflammation in alveolar type Ⅱ cells via TREM-1[J]. Front Cell Dev Biol, 2020 (8): 579157.
|
22 |
Peritore AF, D'Amico R, Siracusa R, et al. Management of acute lung injury: palmitoylethanolamide as a new approach[J]. Int J Mol Sci, 2021, 22 (11): 5533.
|
23 |
Ding Q, Zhu W, Diao Y, et al. Elucidation of the mechanism of action of ginseng against acute lung injury/acute respiratory distress syndrome by a network pharmacology-based strategy[J]. Front Pharmacol, 2021(11): 611794.
|
24 |
Kreis NN, Louwen F, Yuan J. The multifaceted p21 (Cip1/Waf1/CDKN1A) in cell differentiation, migration and cancer therapy[J]. Cancers (Basel), 2019, 11 (9): 1220.
|
25 |
Kreis NN, Friemel A, Zimmer B, et al. Mitotic p21Cip1/CDKN1A is regulated by cyclin-dependent kinase 1 phosphorylation[J]. Oncotarget, 2016, 7 (31): 50215-50228.
|
26 |
Kreis NN, Sanhaji M, Rieger MA, et al. p21Waf1/Cip1 deficiency causes multiple mitotic defects in tumor cells[J]. Oncogene, 2014, 33 (50): 5716-5728.
|