切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2022, Vol. 15 ›› Issue (03) : 241 -245. doi: 10.3877/cma.j.issn.1674-6880.2022.03.013

综述

免疫血栓形成——脓毒症中的一把"双刃剑"
彭晓欢1, 李莉娟1, 张鸿彬1, 郭晓嘉1, 刘洋1, 张连生1,()   
  1. 1. 730030 兰州,兰州大学第二医院血液科
  • 收稿日期:2022-01-05 出版日期:2022-06-30
  • 通信作者: 张连生
  • 基金资助:
    国家自然科学基金地区项目(NSFC31660112); "萃英科技创新"计划应用基础研究项目(CY2019-MS14)
  • Received:2022-01-05 Published:2022-06-30
引用本文:

彭晓欢, 李莉娟, 张鸿彬, 郭晓嘉, 刘洋, 张连生. 免疫血栓形成——脓毒症中的一把"双刃剑"[J]. 中华危重症医学杂志(电子版), 2022, 15(03): 241-245.

脓毒症是宿主对感染反应失调所导致危及生命的器官功能障碍[1],通常伴有凝血功能障碍,是临床危重症患者最主要的死亡原因之一。中国是脓毒症发生率与病死率较高的国家,2018年流行病学数据显示中国每年有3 238万人死于脓毒症,占总病死率的12.6%,高出全球平均水平[2]。病原微生物的毒力和宿主免疫力等因素决定了脓毒症的进展和结果[3]。脓毒症早期,局部凝血激活导致微血管血栓形成有助于宿主防御感染病原体[4,5]。这种防御作用现在被称为"免疫血栓形成"。免疫血栓是以纤维蛋白为结构基础,活化的血小板、白细胞、中性粒细胞胞外网状陷阱(neutrophil extracellular trap,NETs)、微粒和凝血酶、凝血因子等参与的复杂过程[5]。免疫血栓形成是凝血和先天免疫之间相互联系的结果[6]。目前的观点认为,免疫血栓是一把"双刃剑",在一定程度上可以帮助机体免受病原体的侵袭[7]。然而,如果不加以控制,可导致以弥散性血管内凝血(disseminated intravascular coagulation,DIC)为主的临床综合征[5]。为此,本研究对脓毒症免疫血栓形成的关键分子及其在宿主防御中的潜在生理作用、免疫血栓失调作一综述。

1
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315 (8): 801-810.
2
Weng L, Zeng XY, Yin P, et al. Sepsis-related mortality in China: a descriptive analysis[J]. Intensive Care Med, 2018, 44 (7): 1071-1080.
3
黄颖,寿松涛,王军,等. 脓毒症与免疫细胞凋亡相关研究进展[J/CD]. 中华危重症医学杂志(电子版)201710(4):270-273.
4
安睿,申新,李爽,等. 血小板与肠道屏障功能的研究进展[J/CD]. 中华危重症医学杂志(电子版)202013(2):145-148.
5
Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity[J]. Nat Rev Immunol, 2013, 13 (1): 34-45.
6
Loof TG, Schmidt O, Herwald H, et al. Coagulation systems of invertebrates and vertebrates and their roles in innate immunity: the same side of two coins[J]. J Innate Immun2011, 3 (1): 34-40.
7
Gaertner F, Massberg S. Blood coagulation in immunothrombosis—at the frontline of intravascular immunity[J]. Semin Immunol, 2016, 28 (6): 561-569.
8
Prasad JM, Gorkun OV, Raghu H, et al. Mice expressing a mutant form of fibrinogen that cannot support fibrin formation exhibit compromised antimicrobial host defense[J]. Blood, 2015, 126 (17): 2047-2058.
9
Zelaya H, Rothmeier AS, Ruf W. Tissue factor at the crossroad of coagulation and cell signaling[J]. J Thromb Haemost, 2018, 16 (10): 1941-1952.
10
Wu C, Lu W, Zhang Y, et al. Inflammasome activation triggers blood clotting and host death through pyroptosis[J]. Immunity, 2019, 50 (6): 1401-1411.
11
Müller I, Klocke A, Alex M, et al. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets[J]. FASEB J, 2003, 17 (3):476-478.
12
van der Poll T, Herwald H. The coagulation system and its function in early immune defense[J]. Thromb Haemost, 2014, 112 (4): 640-648.
13
Hickey MJ, Kubes P. Intravascular immunity: the host-pathogen encounter in blood vessels[J]. Nat Rev Immunol, 2009, 9 (5): 364-375.
14
Morrissey JH, Choi SH, Smith SA. Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation[J]. Blood, 2012, 119 (25): 5972-5979.
15
Okamoto K, Tamura T, Sawatsubashi Y. Sepsis and disseminated intravascular coagulation[J]. J Intensive Care, 2016 (4): 23.
16
Flaumenhaft R, Dilks JR, Richardson J, et al. Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles[J]. Blood, 2009, 113 (5): 1112-1121.
17
Burnier L, Fontana P, Kwak BR, et al. Cell-derived microparticles in haemostasis and vascular medicine[J]. Thromb Haemost, 2009, 101 (3): 439-451.
18
Furie B, Flaumenhaft R. Thiol isomerases in thrombus formation[J]. Circ Res, 2014, 114 (7): 1162-1173.
19
Rothmeier AS, Marchese P, Langer F, et al. Tissue factor prothrombotic activity is regulated by integrin-arf6 trafficking[J]. Arterioscler Thromb Vasc Biol, 2017, 37 (7): 1323-1331.
20
Tarantino E, Amadio P, Squellerio I, et al. Role of thromboxane-dependent platelet activation in venous thrombosis: aspirin effects in mouse model[J]. Pharmacol Res, 2016 (107): 415-425.
21
Golebiewska EM, Poole AW. Platelet secretion: from haemostasis to wound healing and beyond[J]. Blood Rev, 2015, 29 (3): 153-162.
22
Cox D, Kerrigan SW, Watson SP. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation[J]. J Thromb Haemost, 2011, 9 (6): 1097-1107.
23
Haselmayer P, Grosse-Hovest L, von Landenberg P, et al. TREM-1 ligand expression on platelets enhances neutrophil activation[J]. Blood, 2007, 110 (3): 1029-1035.
24
宋立成,韩志海. 脓毒症相关凝血功能障碍机制及治疗的研究进展[J/CD]. 中华危重症医学杂志(电子版)201710(2):125-129.
25
Carestia A, Kaufman T, Rivadeneyra L, et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets[J]. J Leukoc Biol, 2016, 99 (1): 153-162.
26
Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood[J]. Nat Med, 2007, 13 (4): 463-469.
27
McDonald B, Urrutia R, Yipp BG, et al. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis[J]. Cell Host Microbe, 2012, 12 (3): 324-333.
28
孙建,吴伟东. 脓毒症相关性血小板减少症的危险因素及预后分析[J/CD]. 中华危重症医学杂志(电子版)20147(3):177-181.
29
Venkata C, Kashyap R, Farmer JC, et al. Thrombocytopenia in adult patients with sepsis: incidence, risk factors, and its association with clinical outcome[J]. J Intensive Care, 2013, 1 (1): 9.
30
Adamzik M, Gorlinger K, Peters J, et al. Whole blood impedance aggregometry as a biomarker for the diagnosis and prognosis of severe sepsis[J]. Crit Care, 2012, 16 (5): R204.
31
Darbousset R, Thomas GM, Mezouar S, et al. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation[J]. Blood, 2012, 120 (10): 2133-2143.
32
Von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo[J]. J Exp Med, 2012, 209 (4): 819-835.
33
Mammadova-Bach E, Ollivier V, Loyau S, et al. Platelet glycoprotein Ⅵ binds to polymerized fibrin and promotes thrombin generation[J]. Blood, 2015, 126 (5):683-691.
34
Moosbauer C, Morgenstern E, Cuvelier SL, et al. Eosinophils are a major intravascular location for tissue factor storage and exposure[J]. Blood, 2007, 109 (3): 995.
35
Cho J, Furie BC, Coughlin SR, et al. A critical role for extracellular protein disulfide isomerase during thrombus formation in mice[J]. Clin Invest, 2008, 118 (3): 1123-1131.
36
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303 (5663): 1532-1535.
37
Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis[J]. Proc Natl Acad Sci USA, 2010, 107 (36): 15880-15885.
38
Li P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps[J]. J Exp Med, 2010, 207 (9): 1853-1862.
39
Li RHL, Tablin F. A comparative review of neutrophil extracellular traps in sepsis[J]. Front Vet Sci, 2018 (5): 291.
40
Zucoloto AZ, Jenne CN. Platelet-neutrophil interplay: insights into neutrophil extracellular trap (NET)-driven coagulation in infection[J]. Front Cardiovasc Med, 2019 (6): 85.
41
Meier A, Chien J, Hobohm L, et al. Inhibition of human neutrophil extracellular trap (NET) production by propofol and lipid emulsion[J]. Front Pharmacol, 2019 (10): 323.
42
Degen JL, Bugge TH, Goguen JD. Fibrin and fibrinolysis in infection and host defense[J]. J Thromb Haemost, 2007 (5 Suppl 1): 24-31.
43
Beristain-Covarrubias N, Perez-Toledo M, Flores-Langarica A, et al. Salmonella-induced thrombi in mice develop asynchronously in the spleen and liver and are not effective bacterial traps[J]. Blood, 2019, 133 (6): 600-604.
44
Carestia A, Davis RP, Davis L, et al. Inhibition of immunothrombosis does not affect pathogen capture and does not promote bacterial dissemination in a mouse model of sepsis[J]. Platelets, 2020, 31 (7): 925-931.
45
Deng M, Tang Y, Li W, et al. The endotoxin delivery protein hmgb1 mediates caspase-11-dependent lethality in sepsis[J]. Immunity, 2018, 49 (4): 740-753.e7.
46
Yang X, Cheng X, Tang Y, et al. The role of type 1 interferons in coagulation induced by gram-negative bacteria[J]. Blood, 2020, 135 (14): 1087-1100.
47
Angus DC, van der Poll T. Severe sepsis and septic shock[J]. N Engl J Med, 2013, 369 (9): 840-851.
48
Simmons J, Pittet JF. The coagulopathy of acute sepsis[J]. Curr Opin Anaesthesiol, 2015, 28 (2): 227-236.
No related articles found!
阅读次数
全文


摘要