切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2022, Vol. 15 ›› Issue (03) : 246 -252. doi: 10.3877/cma.j.issn.1674-6880.2022.03.014

综述

血脑屏障损伤与糖尿病认知功能障碍:血小板过度激活的潜在作用
徐福星1, 江涛1, 王强1, 李岩松1,()   
  1. 1. 710061 西安,西安交通大学第一附属医院麻醉手术部&脑科学中心
  • 收稿日期:2022-02-23 出版日期:2022-06-30
  • 通信作者: 李岩松
  • 基金资助:
    国家自然科学基金青年科学基金项目(81801899); 国家自然科学基金面上项目(81974540、81774113)
  • Received:2022-02-23 Published:2022-06-30
引用本文:

徐福星, 江涛, 王强, 李岩松. 血脑屏障损伤与糖尿病认知功能障碍:血小板过度激活的潜在作用[J]. 中华危重症医学杂志(电子版), 2022, 15(03): 246-252.

糖尿病认知功能障碍(diabetic associated cognitive dysfuntion,DACD)作为糖尿病微血管并发症之一,根据疾病严重程度分为糖尿病相关认知减退、轻度认知障碍(mild cognitive impairment,MCI)和痴呆[1],严重影响患者糖尿病自我管理,大大增加低血糖、酮症酸中毒和心脑血管不良事件的发病率[2,3],已成为糖尿病患者的第二大死因[4]。糖尿病患者痴呆的发病风险较普通人群增加约5倍[5],认知功能下降速度增加1倍以上,是阿尔兹海默症(Alzheimer disease,AD)、血管性痴呆及复合痴呆发生的独立危险因素[6]。美国一项研究数据显示,65~74岁糖尿病患者认知障碍患病率为13.1%,75岁及以上人群的患病率为24.2%[7]。尽管涉及胰岛素抵抗、微血管病变、代谢异常等因素,DACD机制仍不十分清楚,亟待阐明。

1
Koekkoek PS, Kappelle LJ, van den Berg E, et al. Cognitive function in patients with diabetes mellitus: guidance for daily care[J]. Lancet Neurol, 2015, 14 (3): 329-340.
2
Biessels GJ, Whitmer RA. Cognitive dysfunction in diabetes: how to implement emerging guidelines[J]. Diabetologia, 2020, 63 (1): 3-9.
3
de Galan BE, Zoungas S, Chalmers J, et al. Cognitive function and risks of cardiovascular disease and hypoglycaemia in patients with type 2 diabetes: the action in diabetes and vascular disease: preterax and diamicron modified release controlled evaluation (ADVANCE) trial[J]. Diabetologia, 2009, 52 (11): 2328-2336.
4
Pearson-Stuttard J, Bennett J, Cheng YJ, et al. Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: an epidemiological analysis of linked primary care records[J]. Lancet Diabetes Endocrinol, 2021, 9 (3): 165-173.
5
Brook E, Mamo J, Wong R, et al. Blood-brain barrier disturbances in diabetes-associated dementia: therapeutic potential for cannabinoids[J]. Pharmacol Res, 2019 (141): 291-297.
6
Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction[J]. Nat Rev Neurosci, 2015, 16 (11): 660-671.
7
Feil DG, Rajan M, Soroka O, et al. Risk of hypoglycemia in older veterans with dementia and cognitive impairment: implications for practice and policy[J]. J Am Geriatr Soc, 2011, 59 (12): 2263-2272.
8
Nation DA, Sweeney MD, Montagne A, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction[J]. Nat Med, 2019, 25 (2): 270-276.
9
van Sloten TT, Sedaghat S, Carnethon MR, et al. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression[J]. Lancet Diabetes Endocrinol, 2020, 8 (4): 325-336.
10
Sorensen BM, Houben AJ, Berendschot TT, et al. Prediabetes and type 2 diabetes are associated with generalized microvascular dysfunction: the maastricht study[J]. Circulation, 2016, 134 (18): 1339-1352.
11
Leiter O, Walker TL. Platelets: the missing link between the blood and brain?[J]. Prog Neurobiol, 2019 (183): 101695.
12
Arthur JF, Jandeleit-Dahm K, Andrews RK. Platelet hyperreactivity in diabetes: focus on GPVI signaling-are useful drugs already available?[J]. Diabetes, 2017, 66 (1): 7-13.
13
Zhou AM, Xiang YJ, Liu EQ, et al. Salvianolic acid a inhibits platelet activation and aggregation in patients with type 2 diabetes mellitus[J]. BMC Cardiovasc Disord, 2020, 20 (1): 15.
14
Ungerer M, Li Z, Baumgartner C, et al. The GPVI-Fc fusion protein Revacept reduces thrombus formation and improves vascular dysfunction in atherosclerosis without any impact on bleeding times[J]. PLoS One, 2013, 8 (8): e71193.
15
Pretorius E. Platelets as potent signaling entities in type 2 diabetes mellitus[J]. Trends Endocrinol Metab, 2019, 30 (8): 532-545.
16
Xu MD, Wu XZ, Zhou Y, et al. Proteomic characteristics of circulating microparticles in patients with newly-diagnosed type 2 diabetes[J]. Am J Transl Res, 2016, 8 (1): 209-220.
17
Rom S, Zuluaga-Ramirez V, Gajghate S, et al. Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models[J]. Mol Neurobiol, 2019, 56 (3): 1883-1896.
18
André, Nannizzi-Alaimo L, Prasad SK, et al. Platelet-derived CD40L: the switch-hitting player of cardiovascular disease[J]. Circulation, 2002, 106 (8): 896-899.
19
Vaidyula VR, Rao AK, Mozzoli M, et al. Effects of hyperglycemia and hyperinsulinemia on circulating tissue factor procoagulant activity and platelet CD40 ligand[J]. Diabetes, 2006, 55 (1): 202-208.
20
Daneman R. The blood-brain barrier in health and disease[J]. Ann Neurol, 2012, 72 (5): 648-672.
21
Salameh TS, Shah GN, Price TO, et al. Blood-brain barrier disruption and neurovascular unit dysfunction in diabetic mice: protection with the mitochondrial carbonic anhydrase inhibitor topiramate[J]. J Pharmacol Exp Ther, 2016, 359 (3): 452-459.
22
Geng J, Wang L, Zhang L, et al. Blood-brain barrier disruption induced cognitive impairment is associated with increase of inflammatory cytokine[J]. Front Aging Neurosci, 2018 (10): 129.
23
安睿,申新,李爽,等. 血小板与肠道屏障功能的研究进展[J/CD]. 中华危重症医学杂志(电子版)202013(2):145-148.
24
Desilles JP, Syvannarath V, Ollivier V, et al. Ex-acerbation of thromboinflammation by hyperglycemia precipitates cerebral infarct growth and hemorrhagic transformation[J]. Stroke, 2017, 48 (7): 1932-1940.
25
Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies[J]. Cardiovasc Diabetol, 2018, 17 (1): 121.
26
Lim HS, Blann AD, Lip GY. Soluble CD40 ligand, soluble P-selectin, interleukin-6, and tissue factor in diabetes mellitus: relationships to cardiovascular disease and risk factor intervention[J]. Circulation, 2004, 109 (21): 2524-2528.
27
Harding SA, Sommerfield AJ, Sarma J, et al. In-creased CD40 ligand and platelet-monocyte aggregates in patients with type 1 diabetes mellitus[J]. Atherosclerosis, 2004, 176 (2): 321-325.
28
Jinchuan Y, Zonggui W, Jinming C, et al. Upre-gulation of CD40--CD40 ligand system in patients with diabetes mellitus[J]. Clin Chim Acta, 2004, 339 (1-2): 85-90.
29
Steven S, Dib M, Hausding M, et al. CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice[J]. Cardiovasc Res, 2018, 114 (2): 312-323.
30
Belostocki K, Pricop L, Redecha PB, et al. Infliximab treatment shifts the balance between stimulatory and inhibitory Fcgamma receptor typeⅡ isoforms on neutrophils in patients with rheumatoid arthritis[J]. Arthritis Rheum, 2008, 58 (2): 384-388.
31
Fuentes E, Palomo I, Alarcón M. Platelet miRNAs and cardiovascular diseases[J]. Life Sci, 2015 (133): 29-44.
32
Pordzik J, Pisarz K, De Rosa S, et al. The potential role of platelet-related micrornas in the development of cardiovascular events in high-risk populations, including diabetic patients: a review[J]. Front Endocrinol (Lausanne), 2018 (9): 74.
33
Zhang Y, Ma KL, Gong YX, et al. Platelet mi-croparticles mediate glomerular endothelial injury in early diabetic nephropathy[J]. J Am Soc Nephrol, 2018, 29 (11): 2671-2695.
34
Suzuki Y, Nagai N, Umemura K. A review of the mechanisms of blood-brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia[J]. Front Cell Neurosci, 2016 (10): 2.
35
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders[J]. Nat Rev Neurol, 2018, 14 (3): 133-150.
36
Janelidze S, Hertze J, Nagga K, et al. Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype[J]. Neurobiol Aging, 2017 (51): 104-112.
37
Goldwaser EL, Acharya NK, Sarkar A, et al. Brea-kdown of the cerebrovasculature and blood-brain barrier: a mechanistic link between diabetes mellitus and Alzheimer's disease[J]. J Alzheimers Dis, 2016, 54 (2): 445-456.
38
Bouchard P, Ghitescu LD, Bendayan M. Morpho-functional studies of the blood-brain barrier in streptozotocin-induced diabetic rats[J]. Diabetologia, 2002, 45 (7): 1017-1025.
39
Min LJ, Mogi M, Shudou M, et al. Peroxisome proliferator-activated receptor-gamma activation with angiotensin Ⅱ type 1 receptor blockade is pivotal for the prevention of blood-brain barrier impairment and cognitive decline in type 2 diabetic mice[J]. Hypertension, 2012, 59 (5): 1079-1088.
40
Acharya NK, Levin EC, Clifford PM, et al. Diabetes and hypercholesterolemia increase blood-brain barrier permeability and brain amyloid deposition: beneficial effects of the LpPLA2 inhibitor darapladib[J]. J Alzheimers Dis, 2013, 35 (1): 179-198.
41
Dias IH, Griffiths HR. Oxidative stress in diabetes-circulating advanced glycation end products, lipid oxidation and vascular disease[J]. Ann Clin Biochem, 2014, 51 (Pt 2): 125-127.
42
Lu QY, Chen W, Lu L, et al. Involvement of RhoA/ROCK1 signaling pathway in hyperglycemia-induced microvascular endothelial dysfunction in diabetic retinopathy[J]. Int J Clin Exp Pathol, 2014, 7 (10): 7268-7277.
43
Hoffman WH, Stamatovic SM, Andjelkovic AV. In-flammatory mediators and blood brain barrier disruption in fatal brain edema of diabetic ketoacidosis[J]. Brain Res, 2009 (1254): 138-148.
44
Horsch AD, Bennink E, van Seeters T, et al. Computed tomography perfusion derived blood-brain barrier permeability does not yet improve prediction of hemorrhagic transformation[J]. Cerebrovasc Dis, 2018, 45 (1-2): 26-32.
45
Raja R, Rosenberg GA, Caprihan A. MRI measurements of blood-brain barrier function in dementia: a review of recent studies[J]. Neuropharmacology, 2018, 134 (Pt B): 259-271.
46
Joseph CR. Novel MRI techniques identifying vascular leak and paravascular flow reduction in early Alzheimer disease[J]. Biomedicines, 2020, 8 (7): 228.
47
Randriamboavonjy V, Sopova K, Stellos K, et al. Platelets as potential link between diabetes and Alzheimer's disease[J]. Curr Alzheimer Res, 2014, 11 (9): 862-868.
48
Akingbade OES, Gibson C, Kalaria RN, et al. Platelets: peripheral biomarkers of dementia?[J]. J Alzheimers Dis, 2018, 63 (4): 1235-1259.
49
Stellos K, Panagiota V, Kogel A, et al. Predictive value of platelet activation for the rate of cognitive decline in Alzheimer's disease patients[J]. J Cereb Blood Flow Metab, 2010, 30 (11): 1817-1820.
50
Kniewallner KM, Foidl BM, Humpel C. Platelets isolated from an Alzheimer mouse damage healthy cortical vessels and cause inflammation in an organotypic ex vivo brain slice model[J]. Sci Rep, 2018, 8 (1): 15483.
51
Shinohara M, Sato N. Bidirectional interactions between diabetes and Alzheimer's disease[J]. Neurochem Int, 2017 (108): 296-302.
52
González-Sánchez M, Díaz T, Pascual C, et al. Platelet proteomic analysis revealed differential pattern of cytoskeletal- and immune-related proteins at early stages of Alzheimer's disease[J]. Mol Neurobiol, 2018, 55 (12): 8815-8825.
53
Schuette C, Steffens D, Witkowski M, et al. The effect of clopidogrel on platelet activity in patients with and without type-2 diabetes mellitus: a comparative study[J]. Cardiovasc Diabetol, 2015 (14): 15.
54
Bhat SA, Goel R, Shukla R, et al. Platelet CD40L induces activation of astrocytes and microglia in hypertension[J]. Brain Behav Immun, 2017 (59): 173-189.
55
Donner L, Falker K, Gremer L, et al. Platelets contribute to amyloid-beta aggregation in cerebral vessels through integrin αⅡbβ3-induced outside-in signaling and clusterin release[J]. Sci Signal, 2016, 9 (429): ra52.
56
Kwon JS, Kim YS, Cho HH, et al. Cilostazol protects vessels against hyperglycemic injury and accelerates healing after implantation of drug-eluting stent in a type 1 diabetes mellitus rat aorta stent model[J]. Atherosclerosis, 2013, 228 (2): 332-338.
57
Wada T, Onogi Y, Kimura Y, et al. Cilostazol ameliorates systemic insulin resistance in diabetic db/db mice by suppressing chronic inflammation in adipose tissue via modulation of both adipocyte and macrophage functions[J]. Eur J Pharmacol, 2013, 707 (1-3): 120-129.
58
Bieber M, Schuhmann MK, Volz J, et al. Description of a novel phosphodiesterase (PDE)-3 inhibitor protecting mice from ischemic stroke independent from platelet function[J]. Stroke, 2019, 50 (2): 478-486.
59
Santi D, Giannetta E, Isidori AM, et al. Therapy of endocrine disease. Effects of chronic use of phosphodiesterase inhibitors on endothelial markers in type 2 diabetes mellitus: a meta-analysis[J]. Eur J Endocrinol, 2015, 172 (3): R103-R114.
60
Kitamura A, Manso Y, Duncombe J, et al. Long-term cilostazol treatment reduces gliovascular damage and memory impairment in a mouse model of chronic cerebral hypoperfusion[J]. Sci Rep, 2017, 7 (1): 4299.
61
Yanai S, Ito H, Endo S. Long-term cilostazol administration prevents age-related decline of hippocampus-dependent memory in mice[J]. Neuropharmacology, 2018 (129): 57-68.
62
Tai SY, Chien CY, Chang YH, et al. Cilostazol use is associated with reduced risk of dementia: a nationwide cohort study[J]. Neurotherapeutics, 2017, 14 (3): 784-791.
63
Kumar A, Kumar A, Jaggi AS, et al. Efficacy of Cilostazol a selective phosphodiesterase-3 inhibitor in rat model of Streptozotocin diabetes induced vascular dementia[J]. Pharmacol Biochem Behav, 2015 (135): 20-30.
64
Kwon KJ, Lee EJ, Kim MK, et al. Diabetes augments cognitive dysfunction in chronic cerebral hypoperfusion by increasing neuronal cell death: implication of cilostazol for diabetes mellitus-induced dementia[J]. Neurobiol Dis, 2015 (73): 12-23.
65
Wilhite DB, Comerota AJ, Schmieder FA, et al. Managing PAD with multiple platelet inhibitors: the effect of combination therapy on bleeding time[J]. J Vasc Surg, 2003, 38 (4): 710-713.
No related articles found!
阅读次数
全文


摘要