切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2022, Vol. 15 ›› Issue (03) : 198 -204. doi: 10.3877/cma.j.issn.1674-6880.2022.03.004

论著

触发灵敏度对压力支持通气患者肺通气均一性的影响
陈光强1, 孙秀梅1, 陈静然1, 周益民1, 杨燕琳1, 徐明1, 周建新1,()   
  1. 1. 100070 北京,首都医科大学附属北京天坛医院重症医学科
  • 收稿日期:2021-06-04 出版日期:2022-06-30
  • 通信作者: 周建新
  • 基金资助:
    北京市科技计划项目(Z161100000116081)

Effect of trigger sensitivity on ventilation homogeneity in patients under pressure support ventilation

Guangqiang Chen1, Xiumei Sun1, Jingran Chen1, Yimin Zhou1, Yanlin Yang1, Ming Xu1, Jianxin Zhou1,()   

  1. 1. Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
  • Received:2021-06-04 Published:2022-06-30
  • Corresponding author: Jianxin Zhou
引用本文:

陈光强, 孙秀梅, 陈静然, 周益民, 杨燕琳, 徐明, 周建新. 触发灵敏度对压力支持通气患者肺通气均一性的影响[J]. 中华危重症医学杂志(电子版), 2022, 15(03): 198-204.

Guangqiang Chen, Xiumei Sun, Jingran Chen, Yimin Zhou, Yanlin Yang, Ming Xu, Jianxin Zhou. Effect of trigger sensitivity on ventilation homogeneity in patients under pressure support ventilation[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2022, 15(03): 198-204.

目的

观察呼吸机触发灵敏度对压力支持通气患者肺通气均一性的影响。

方法

前瞻性纳入20例使用压力支持模式通气时存在肺不均一性通气的患者,即应用肺电阻抗断层成像监测时重力依赖区通气分布比低于45%。随机使用低和高两种流速触发灵敏度水平通气20 min(采用Servo-i呼吸机流速触发灵敏度的最低和最高限值2 L/min和0.2 L/min)。通过肺电阻抗断层成像评估重力依赖区通气分布和呼气末肺体积,采用食道压监测评估吸气努力和做功。

结果

与高触发灵敏度相比,低触发灵敏度增加了患者吸气时重力依赖区通气分布百分比[(33 ± 9)% vs.(36 ± 9)%,t = 3.735,P = 0.001]、食道压变化值[0.8(0.4,1.8)cmH2O vs. 1.6(1.0,2.1)cmH2O,Z = 2.722,P = 0.021]、压力时间乘积[29(15,54)cmH2O·s-1·min-1 vs. 48(23,74)cmH2O·s-1·min-1Z = 3.298,P = 0.044],但跨肺压变化值没有明显变化[(12.6 ± 4.3)cmH2O vs.(12.8 ± 4.2)cmH2O,t = 0.906,P = 0.376]。此外,低触发灵敏度的整体呼气末肺容积变化值为78(29,170)mL,且其变化值主要分布于重力依赖区[75(-6,131)mL]。

结论

压力支持通气时,降低触发灵敏度可通过增加吸气努力使更多的气体进入肺重力依赖区并改善通气均一性,同时吸气努力和跨肺压仍在可接受范围内。

Objective

To investigate the effect of trigger sensitivity on ventilation homogeneity in patients under pressure support ventilation.

Methods

We prospectively enrolled 20 patients with heterogeneous lung ventilation under pressure support ventilation that was defined by electrical impedance tomography as the distribution of tidal volume in dependent region lower than 45%. The low and high flow trigger sensitivity (the lowest and highest limits of Servo-i were 2 L/min and 0.2 L/min, respectively) were randomly applied for 20 mins. The distribution of tidal volume in dependent region and end-expiratory lung volume (EELV) were evaluated by electrical impedance tomography. The esophageal manometry was used to measure the inspiratory effort and work of breathing.

Results

Comparing to the high trigger sensitivity, the low trigger sensitivity increased the relative distribution of tidal volume in dependent region [(33 ± 9)% vs. (36 ± 9)%, t = 3.735, P = 0.001], the esophageal pressure swings during inspiration [0.8 (0.4, 1.8) cmH2O vs. 1.6 (1.0, 2.1) cmH2O, Z = 2.722, P = 0.021], and pressure time product [29 (15, 54) cmH2O·s-1·min-1 vs. 48 (23, 74) cmH2O·s-1·min-1, Z = 3.298, P = 0.044]; whereas, the change of transpulmonary pressure did not significantly increase [(12.6 ± 4.3) cmH2O vs. (12.8 ± 4.2) cmH2O, t = 0.906, P = 0.376]. The global EELV of a low trigger sensitivity during pressure support ventilation was 78 (29, 170) mL, which mainly acted on the dependent region [75 (-6, 131) mL].

Conclusion

Decreasing trigger sensitivity could allow more air to flow into the dependent lung region and improve homogeneity during pressure support ventilation by increasing inspiratory effort, while the working of breathing and transpulmonary pressure remain within acceptable ranges.

表1 触发灵敏度对压力支持通气患者通气均一性的影响( ± s
表2 触发灵敏度对压力支持通气患者通气参数和血气分析结果的影响( ± s
表3 触发灵敏度对压力支持通气患者吸气努力和跨肺压的影响[MP25P75)]
表4 触发灵敏度对不同吸气努力患者肺通气的影响[MP25P75)]
1
Gattinoni L, Carlesso E, Caironi P. Stress and strain within the lung[J]. Curr Opin Crit Care, 2012, 18 (1): 42-47.
2
Victorino JA, Borges JB, Okamoto VN, et al. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography[J]. Am J Respir Crit Care Med, 2004, 169 (7): 791-800.
3
Gattinoni L, Pelosi P, Crotti S, et al. Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome[J]. Am J Respir Crit Care Med, 1995, 151 (6): 1807-1814.
4
Mauri T, Bellani G, Confalonieri A, et al. Topographic distribution of tidal ventilation in acute respiratory distress syndrome: effects of positive end-expiratory pressure and pressure support[J]. Crit Care Med, 2013, 41 (7): 1664-1673.
5
Vieira SR, Puybasset L, Richecoeur J, et al. A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension[J]. Am J Respir Crit Care Med, 1998, 158 (5 Pt 1): 1571-1577.
6
Gattinoni L, Pesenti A, Bombino M, et al. Relationship between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure[J]. Anesthesiology, 1988, 69 (6): 824-832.
7
Dambrosio M, Roupie E, Mollet JJ, et al. Effects of positive end-expiratory pressure and different Vts on alveolar recruitment and hyperinflation[J]. Anesthesiology, 1997, 87 (3): 495-503.
8
Chiumello D, Marino A, Brioni M, et al. Lung recr-uitment assessed by respiratory mechanics and by CT scan: what is the relationship?[J]. Am J Respir Crit Care Med, 2015, 193 (11): 1254-1263.
9
郭晓夏,安友仲. 急性呼吸窘迫综合征患者机械通气保留自主呼吸的利弊与时机[J]. 中华危重病急救医学201527(9):781-784.
10
Lipes J, Bojmehrani A, Lellouche F. Low tidal volume ventilation in patients without acute respiratory distress syndrome: a paradigm shift in mechanical ventilation[J]. Crit Care Res Prac, 2012 (2012): 416862.
11
Neto AS, Simonis FD, Barbas CS, et al. Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual patient data analysis[J]. Crit Care Med, 2015, 43 (10): 2155-2163.
12
Zhang Z, Hu X, Zhang X, et al. Lung protective ventilation in patients undergoing major surgery: a systematic review protocol[J]. BMJ Open, 2014, 4 (3): e004542.
13
Tobin MJ. Respiratory monitoring[J]. JAMA, 1990, 264 (2): 244-251.
14
Baydur A, Behrakis PK, Zin WA, et al. A simple method for assessing the validity of the esophageal balloon technique[J]. Am Rev Respir Dis, 1982, 126 (5): 788-791.
15
Akoumianaki E, Maggiore SM, Valenza F, et al. The application of esophageal pressure measurement in patients with respiratory failure[J]. Am J Respir Crit Care Med, 2014, 189 (5): 520-531.
16
Mauri T, Yoshida T, Bellani G, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives[J]. Intensive Care Med, 2016, 42 (9): 1360-1373.
17
Bellani G, Mauri T, Coppadoro A, et al. Estimation of patient's inspiratory effort from the electrical activity of the diaphragm[J]. Crit Care Med, 2013, 41 (6): 1483-1491.
18
Sassoon CS, Light RW, Lodia R, et al. Pressure-time product during continuous positive airway pressure, pressure support ventilation, and T-piece during weaning from mechanical ventilation[J]. Am Rev of Respir Dis, 1991, 143 (3): 469-475.
19
Zhao Z, Peng SY, Chang MY, et al. Spontaneous breathing trials after prolonged mechanical ventilation monitored by electrical impedance tomography: an observational study[J]. Acta Anaesthesiol Scand, 2017, 61 (9): 1166-1175.
20
Grivans C, Lundin S, Stenqvist O, et al. Positive end-expiratory pressure-induced changes in end-expiratory lung volume measured by spirometry and electric impedance tomography[J]. Acta Anaesthesiol Scand, 2011, 55 (9): 1068-1077.
21
Chiumello D, Froio S, Bouhemad B, et al. Clinical review: lung imaging in acute respiratory distress syndrome patients—an update[J]. Crit Care, 2013, 17 (6): 243.
22
Frerichs I, Becher T, Weiler N. Methodology of electrical impedance tomography-derived measures of regional lung ventilation[J]. Crit Care, 2014, 18 (6): 635.
23
Wrigge H, Zinserling J, Muders T, et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury[J]. Crit Care Med, 2008, 36 (3): 903-909.
24
Yoshida T, Uchiyama A, Fujino Y. The role of spontaneous effort during mechanical ventilation: normal lung versus injured lung[J]. J Intensive Care, 2015 (3): 18.
25
Froese AB, Bryan AC. Effects of anesthesia and paralysis on diaphragmatic mechanics in man[J]. Anesthesiology, 1974, 41 (3): 242-255.
26
Krayer S, Rehder K, Vettermann J, et al. Position and motion of the human diaphragm during anesthesia-paralysis[J]. Anesthesiology, 1989, 70 (6): 891-898.
27
Hsu YL, Tien AJ, Chang MY, et al. Regional ventilation redistribution measured by electrical impedance tomography during spontaneous breathing trial with automatic tube compensation[J]. Physiol Meas, 2017, 38 (6): 1193-1203.
28
Radke OC, Schneider T, Vogel E, et al. Effect of trigger sensitivity on redistribution of ventilation during pressure support ventilation detected by electrical impedance tomography[J]. Anesth Pain Med, 2015, 5 (4): e27439.
29
Putensen C, Zech S, Wrigge H, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury[J]. Am J Respir Crit Care Med, 2001, 164 (1): 43-49.
30
Hoppin FG Jr, Green ID, Mead J. Distribution of pleural surface pressure in dogs[J]. J Appl Physiol, 1969, 27 (6): 863-873.
31
Krueger JJ, Bain T, Patterson JL Jr. Elevation gradient of intrathoracic pressure[J]. J Appl Physiol, 1961 (16): 465-468.
32
D'Angelo E, Sant'Ambrogio G, Agostoni E. Effect of diaphragm activity or paralysis on distribution of pleural pressure[J]. J Appl Physiol, 1974, 37 (3): 311-315.
33
D'Angelo E, Agostoni E. Continuous recording of ple-ural surface pressure at various sites[J]. Respir Physiol, 1973, 19 (3): 356-368.
34
Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation[J]. Am J Respir Crit Care Med, 2013, 188 (12): 1420-1427.
35
杨睿,周垒垒,薛春菊,等. 自主呼吸在ARDS机械通气中应用的研究进展[J]. 中华危重病急救医学202133(10):1277-1280.
36
Goligher EC, Fan E, Herridge MS, et al. Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort[J]. Am J Respir Crit Care Med, 2015, 192 (9): 1080-1088.
[1] 豆艺璇, 黄怀, 钱绮雯, 邢然然, 林丽, 白建芳. 低强度吸气肌训练对机械通气患者肺康复的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 370-375.
[2] 徐娟, 孙汝贤, 赵东亚, 张清艳, 金兆辰, 蔡燕. 右美托咪定序贯镇静模式对中深度镇静的机械通气患者预后和谵妄的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 363-369.
[3] 许振琦, 易伟, 范闻轩, 王金锋. 经鼻高流量氧疗与无创机械通气在严重创伤术后轻中度低氧血症患者中的临床应用[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 306-309.
[4] 佳麒, 罗楷, 杨磊, 李羽. 气管插管患儿围术期套囊压力管理研究现状杨[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 132-138.
[5] 程传丽, 曾慧, 周静, 孙凌霞, 吴敏, 钱明江, 陈武, 万洁, 周仁佳. 超声引导下胸肺物理治疗对机械通气患者膈肌功能的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 563-565.
[6] 代芬, 卞士柱. 无创机械通气联合肺康复在肺动脉高压呼吸衰竭治疗中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 560-562.
[7] 钱晓英, 吴新, 徐婷婷. 颅脑损伤并发呼吸衰竭患者早期机械通气的效果分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 526-528.
[8] 徐欣轶, 薛蓓, 蒋莉, 陈慧. NRI联合CFS评分对肺癌术后机械通气的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 358-360.
[9] 林金锋, 张素燕, 田李均, 曹志龙, 徐俊贤, 韩旭东. 短暂呼气末阻塞法用于指导机械通气患者撤机的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 266-268.
[10] 周旻忞, 张恒喜, 冯华, 施林燕. 超声膈肌功能评估对重症肺炎伴呼吸衰竭患者机械通气撤机的指导意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 98-100.
[11] 张浩月, 张宇佳, 蒲萍. 经鼻导管高流量氧疗在ICU机械通气患者撤机后效果的Meta分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 801-805.
[12] 李宏亮, 周建新. 反转触发:易被忽视的人机不同步[J]. 中华重症医学电子杂志, 2023, 09(01): 19-24.
[13] 朱秀芬, 韦碧琳, 郑慧芳, 丁林芳, 徐子萌, 余文轩, 原皓, 常泽楠, 黄志坤, 刘紫锰. T管与PSV自主呼吸试验对重症患者成功撤机后临床转归的影响——一项回顾性队列研究[J]. 中华重症医学电子杂志, 2023, 09(01): 54-61.
[14] 张俊谊, 徐晓婷, 刘玲. 肌肉组织特异性miRNA与机械通气患者膈肌功能及撤机结局的关系[J]. 中华重症医学电子杂志, 2023, 09(01): 46-53.
[15] 杨怡, 胡馗, 胡汝均, 江智霞. 高氧血症与机械通气治疗导致呼吸机相关性肺炎的相关性研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(06): 597-600.
阅读次数
全文


摘要