切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2022, Vol. 15 ›› Issue (03) : 189 -197. doi: 10.3877/cma.j.issn.1674-6880.2022.03.003

论著

轻中度感染性疾病患者进展为脓毒症的相关危险因素分析
范致远1, 冯梦晓2, 陆远强1,()   
  1. 1. 310001 杭州,浙江大学医学院附属第一医院急诊科 浙江省增龄与理化损伤性疾病诊治研究重点实验室(范致远为在职研究生,现工作单位为桐乡市第一人民医院急诊科)
    2. 310001 杭州,浙江大学医学院附属第一医院急诊科 浙江省增龄与理化损伤性疾病诊治研究重点实验室
  • 收稿日期:2022-04-12 出版日期:2022-06-30
  • 通信作者: 陆远强
  • 基金资助:
    传染病诊治国家重点实验室开放基金项目(2018KF02); "十三五"浙江省中医药(中西医结合)重点学科(2017-XK-A36)

Risk factors for progression to sepsis in patients with mild to moderate infectious diseases

Zhiyuan Fan1, Mengxiao Feng2, Yuanqiang Lu1,()   

  1. 1. Department of Emergency, Zhejiang Provincial Key Laboratory of Diagnosis and Treatment of Aging and Physical-chemical Injury Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
  • Received:2022-04-12 Published:2022-06-30
  • Corresponding author: Yuanqiang Lu
引用本文:

范致远, 冯梦晓, 陆远强. 轻中度感染性疾病患者进展为脓毒症的相关危险因素分析[J]. 中华危重症医学杂志(电子版), 2022, 15(03): 189-197.

Zhiyuan Fan, Mengxiao Feng, Yuanqiang Lu. Risk factors for progression to sepsis in patients with mild to moderate infectious diseases[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2022, 15(03): 189-197.

目的

探讨轻中度感染性患者进展为脓毒症的相关危险因素。

方法

回顾性分析2019年9月至2021年12月收治的390例临床诊断为感染性疾病患者的临床资料。根据入院序贯器官衰竭估计(SOFA)评分将390例患者分为脓毒症组(165例,SOFA评分≥ 2分)和轻中度感染组(225例,SOFA评分<2分)。比较两组患者的一般情况、实验室检查指标及免疫学相关指标。采用Lasso回归模型和多因素Logistic回归模型筛选影响轻中度感染进展为脓毒症的相关影响因素。采用受试者工作特征(ROC)曲线检测各相关因素的预测效能。

结果

与轻中度感染组患者比较,脓毒症患者的年龄较高,起病至就诊时间较短,心率及呼吸较快,心脑血管疾病、糖尿病及高血压病史较多,入院体温、白细胞、中性粒细胞、红细胞分布宽度(RDW)、中性粒细胞与淋巴细胞比值(NLR)、单核细胞与淋巴细胞比值、降钙素原、C反应蛋白、天冬氨酸氨基转移酶、总胆红素、血肌酐、血尿素、乳酸脱氢酶、羟丁酸脱氢酶、肌酸激酶、肌酸激酶同工酶、铁蛋白、乳酸、凝血酶原时间、活化部分凝血活酶时间、D-二聚体、白细胞介素6(IL-6)、IL-10、IL-6/IL-4、IL-6/IL-10均较高,淋巴细胞、单核细胞、血红蛋白、血小板、红细胞压积、胆碱酯酶、白蛋白、血氧饱和度、IL-4、肿瘤坏死因子α(TNF-α)、干扰素γ、TNF-α/IL-10水平均较低(P均<0.05)。经Lasso回归模型及多因素Logistic回归分析显示,RDW[比值比(OR)= 1.399,95%置信区间(CI)(1.122,1.743),P = 0.003]、NLR[OR = 1.050,95%CI(1.010,1.091),P = 0.013]、总胆红素[OR = 1.111,95% CI(1.055,1.170),P<0.001]、血尿素[OR = 1.172,95%CI(1.041,1.320),P = 0.009]及IL-6[OR = 1.006,95%CI(1.002,1.010),P = 0.002]为脓毒症发生的独立危险因素,而血小板[OR = 0.994,95%CI(0.990,0.997),P = 0.001]及白蛋白[OR = 0.866,95%CI(0.799,0.939),P<0.001]则为独立保护因素。ROC曲线分析表明,血小板的曲线下面积(AUC)为0.756[95%CI(0.705,0.808),P<0.001],RDW的AUC为0.748[95%CI(0.699,0.798),P<0.001],NLR的AUC为0.786[95%CI(0.738,0.834),P<0.001],总胆红素的AUC为0.738[95%CI(0.685,0.790),P<0.001],白蛋白的AUC为0.795[95%CI(0.749,0.840),P<0.001],血尿素的AUC为0.780[95%CI(0.729,0.830),P<0.001],IL-6的AUC为0.801[95%CI(0.756,0.845),P<0.001],联合指标的AUC为0.939[95%CI(0.915,0.963),P < 0.001],且联合指标较IL-6(Z = 6.519,P<0.001)、NLR(Z = 6.258,P<0.001)、血尿素(Z = 6.632,P<0.001)、血小板(Z = 7.412,P<0.001)、RDW(Z = 7.631,P<0.001)、白蛋白(Z = 6.164,P< 0.001)及总胆红素(Z = 8.348,P<0.001)单项指标的预测效能更优。

结论

RDW、NLR、总胆红素、血尿素及IL-6为脓毒症发生的独立危险因素,而血小板及白蛋白则为独立保护因素,且联合指标的预测效能相比各独立相关因素更好。

Objective

To investigate the risk factors for progression to sepsis in patients with mild to moderate infectious diseases.

Methods

The clinical data of 390 patients with clinically diagnosed infectious diseases from September 2019 to December 2021 were retrospectively analyzed. According to whether or not sequential organ failure assessment (SOFA) score ≥ 2 on admission, 390 patients were divided into a sepsis group (165 cases) and a mild-moderate infection group (225 cases). The general data, laboratory test indexes, and immunological indexes were compared between the two groups. The Lasso regression model and multivariate Logistic regression model were used to screen the independent factors for influencing the progression of mild-moderate infection to sepsis. The receiver operating characteristic (ROC) curve was used to assess the predictive effectiveness of each correlation factor.

Results

In the sepsis group, the patients were older, the time interval between disease onset and hospital arrival was shorter, the heart rate and respiration were faster, the incidences of cardiovascular and cerebrovascular diseases, diabetes, and hypertension were higher, and the levels of admission temperature, leukocytes, neutrophils, red blood cell distribution width (RDW), neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio, procalcitonin, C-reactive protein, aspartate aminotransferase, total bilirubin, serum creatinine, blood urea, lactate dehydrogenase, hydroxybutyrate dehydrogenase, creatine kinase, creatine kinase MB, ferritin, lactic acid, prothrombin time, activated partial thromboplastin time, D-dimer, interleukin-6 (IL-6), IL-10, IL-6/IL-4, and IL-6/IL-10 were all much higher than those in the mild-moderate infection group; whereas, the levels of lymphocytes, monocytes, hemoglobin, platelets, hematocrit, cholinesterase, albumin, blood oxygen saturation, IL-4, tumor necrosis factor-alpha (TNF-α), interferon γ, and TNF-α/IL-10 were much lower (all P<0.05). The Lasso regression model and multivariate Logistic regression analysis revealed that the RDW [odds ratio (OR) = 1.399, 95% confidence intervals (CI) (1.122, 1.743), P = 0.003], NLR [OR = 1.050, 95%CI (1.010, 1.091), P = 0.013], total bilirubin [OR = 1.111, 95%CI (1.055, 1.170), P<0.001], blood urea [OR = 1.172, 95%CI (1.041, 1.320), P = 0.009], and IL-6 [OR = 1.006, 95%CI (1.002, 1.010), P = 0.002] were independent risk factors for mild-moderate infection progressing to sepsis, while the platelet [OR = 0.994, 95%CI (0.990, 0.997), P = 0.001] and albumin [OR = 0.866, 95%CI (0.799, 0.939), P<0.001] were independent protective factors. The ROC curve showed that the area under the curve (AUC) of platelets was 0.756 [95%CI (0.705, 0.808), P < 0.001], AUC of RDW was 0.748 [95%CI (0.699, 0.798), P < 0.001], AUC of NLR was 0.786 [95%CI (0.738, 0.834), P < 0.001], AUC of total bilirubin was 0.738 [95%CI (0.685, 0.790), P < 0.001], AUC of albumin was 0.795 [95%CI (0.749, 0.840), P < 0.001], AUC of blood urea was 0.780 [95%CI (0.729, 0.830), P < 0.001], AUC of IL-6 was 0.801 [95%CI (0.756, 0.845), P < 0.001], and AUC of combinated indicator was 0.939 [95%CI (0.915, 0.963), P < 0.001]. The predictive effectiveness of combined indicator model was significantly higher than that of IL-6 (Z = 6.519, P < 0.001), NLR (Z = 6.258, P < 0.001), blood urea (Z = 6.632, P < 0.001), platelet (Z = 7.412, P < 0.001), RDW (Z = 7.631, P < 0.001), albumin (Z = 6.164, P < 0.001), and total bilirubin (Z = 8.348, P < 0.001).

Conclusions

The RDW, NLR, total bilirubin, blood urea, and IL-6 are independent risk factors for mild-moderate infection progressing to sepsis, while the platelet and albumin are independent protective factors. The combined indicator has better predictive efficacy than each independent correlation factor.

表1 两组感染性疾病患者一般情况的比较[MP25P75)]
表2 两组感染性疾病患者实验室指标的比较[MP25P75)]
组别 例数 白细胞(× 109/L) 中性粒细胞(× 109/L) 淋巴细胞(× 109/L) 单核细胞(× 109/L) 血红蛋白(g/L) 血小板(× 109/L) HCT(%) RDW(%) NLR PLR
轻中度感染组 225 7(5,10) 4.7(2.9,7.5) 1.3(0.9,1.8) 0.56(0.43,0.85) 125(111,138) 233(175,298) 37(33,41) 13(12,13) 3.8(2.0,6.3) 177(132,252)
脓毒症组 165 10(6,15) 8.6(5.0,14.0) 0.7(0.4,1.1) 0.53(0.29,0.82) 114.00(94,126) 138(83,213) 33(28,37) 14(13,15) 12.3(5.4,25.1) 214(102,408)
t/χ2/Z   4.830 6.467 9.292 2.085 5.835 8.655 6.105 8.393 9.642 1.578
P   <0.001 <0.001 <0.001 0.037 <0.001 <0.001 <0.001 <0.001 <0.001 0.114
组别 例数 MLR PCT(μg/L) CRP(mg/L) 胆碱酯酶(U/L) ALT(U/L) AST(U/L) 总胆红素(μmol/L) 白蛋白(g/L, ± s 血肌酐(μmol/L) 血尿素(mmol/L) 乳酸脱氢酶(U/L)
轻中度感染组 225 0.48(0.29,0.71) 0.20(0.06,1.29) 62(17,121) 6 194(4 894,7 463) 24(14,50) 22(15,37) 8(6,11) 37 ± 5 72(58,82) 4(3,6) 199(170,258)
脓毒症组 165 0.70(0.39,1.22) 1.90(0.57,11.47) 123(66,195) 3 770(2 803,5 340) 28(16,61) 38(22,84) 15(8,28) 31 ± 5 86(64,142) 8(5,14) 282(219,431)
t/χ2/Z   5.000 8.972 6.724 10.409 1.789 6.617 8.022 11.067 5.748 9.445 8.379
P   <0.001 <0.001 <0.001 <0.001 0.074 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
组别 例数 羟丁酸脱氢酶(U/L) 肌酸激酶(U/L) CK-MB(U/L) 铁蛋白(μg/L) 乳酸(mmol/L) 血氧饱和度(%) PT(s) APTT(s) FBG(g/L) D-二聚体(μg/L)
轻中度感染组 225 153(132,196) 50(34,84) 13(10,16) 445(254,780) 1.20(1.00,1.78) 98(97,98) 12(12,13) 28(26,30) 5.1(3.5,6.50) 960(437,1 959)
脓毒症组 165 221(168,330) 78(37,223) 17(12,28) 738(444,1 831) 1.60(1.10,2.50) 97(95,98) 13(12,15) 31(28,36) 4.7(3.2,6.0) 2 977(1 620,7 772)
t/χ2/Z   8.571 4.472 6.119 7.490 3.475 2.916 6.364 6.704 1.686 9.384
P   <0.001 <0.001 <0.001 <0.001 0.001 0.004 <0.001 <0.001 0.092 <0.001
表3 两组感染性疾病患者免疫学指标的比较[MP25P75)]
图1 Lasso回归变量筛选及交叉验证注:a图显示上横坐标是此时模型中非零系数的个数,图中的每一条曲线代表了每一个自变量系数的变化轨迹,随着λ值(惩罚力度)增加,44个自变量的变量系数不断减少,相对不重要的部分自变量变量系数变为0,因部分变量数字重叠故在图中未显示;b图显示不同的λ值来观察模型误差,上横轴是自变量个数,上图显示有两条虚线,左侧是均方误差最小时的λ值(0.030),对应的变量个数为15个,右侧是距离均方误差最小时一个标准误的λ值(0.053),对应的变量个数为10个,本研究选取右侧虚线构建回归模型
表4 影响轻中度感染患者进展为脓毒症的危险因素分析
图2 ROC曲线分析各影响因素对轻中度感染患者进展为脓毒症的预测效能注:ROC.受试者工作特征;NLR.中性粒细胞与淋巴细胞比值;IL-6.白细胞介素6;RDW.红细胞分布宽度
表5 各指标对轻中度感染患者进展为脓毒症的ROC曲线分析
1
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315 (8): 801-810.
2
Liu V, Escobar GJ, Greene JD, et al. Hospital deaths in patients with sepsis from 2 independent cohorts[J]. JAMA, 2014, 312 (1): 90-92.
3
Torio CM, Moore BJ. National inpatient hospital costs: the most expensive conditions by payer, 2013: statistical brief #204[EB/OL]. [2022-03-22].

URL    
4
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395 (10219): 200-211.
5
Demling R, LaLonde C, Saldinger P, et al. Multipleorgan dysfunction in the surgical patient: pathophysiology, prevention, and treatment[J]. Curr Probl Surg, 1993, 30 (4): 345-414.
6
中国医疗保健国际交流促进会急诊医学分会,中华医学会急诊医学分会,中国医师协会急诊医师分会,等. 中国"脓毒症早期预防与阻断"急诊专家共识[J]. 中华危重病急救医学202032(5):518-530.
7
Dinarello CA. Historical insights into cytokines[J]. Eur J Immunol, 2007 (37 Suppl 1): S34-S45.
8
Matsumoto H, Ogura H, Shimizu K, et al. The clinical importance of a cytokine network in the acute phase of sepsis[J]. Sci Rep, 2018, 8 (1): 13995.
9
Sousa A, Raposo F, Fonseca S, et al. Measurement of cytokines and adhesion molecules in the first 72 hours after severe trauma: association with severity and outcome[J]. Dis Markers, 2015: 747036.
10
Pierrakos C, Velissaris D, Bisdorff M, et al. Biomarkers of sepsis: time for a reappraisal[J]. Crit Care, 2020, 24 (1): 287.
11
Denstaedt SJ, Singer BH, Standiford TJ. Sepsis and nosocomial infection: patient characteristics, mechanisms, and modulation[J]. Front Immunol, 2018 (9): 2446.
12
Leisman DE, Ronner L, Pinotti R, et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes[J]. Lancet Respir Med, 2020, 8 (12): 1233-1244.
13
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease[J]. Cold Spring Harb Perspect Biol, 2014, 6 (10): a16295.
14
Schindler R, Mancilla J, Endres S, et al. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF[J]. Blood, 1990, 75 (1): 40-47.
15
Steensberg A, Fischer CP, Keller C, et al. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans[J]. Am J Physiol Endocrinol Metab, 2003, 285 (2): E433-E437.
16
Henning DJ, Hall MK, Watsjold BK, et al. Inter-leukin-6 improves infection identification when added to physician judgment during evaluation of potentially septic patients[J]. Am J Emerg Med, 2020, 38 (5): 947-952.
17
Cong S, Ma T, Di X, et al. Diagnostic value of neutrophil CD64, procalcitonin, and interleukin-6 in sepsis: a meta-analysis[J]. BMC Infect Dis, 2021, 21 (1): 384.
18
Sun J, Madan R, Karp CL, et al. Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10[J]. Nat Med, 2009, 15 (3): 277-284.
19
Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy[J]. Nat Rev Immunol, 2013, 13 (12): 862-874.
20
Zhou H, Li Z, Liang H, et al. Thrombocytopenia and platelet count recovery in patients with sepsis-3: a retrospective observational study[J]. Platelets, 2022, 33(4): 612-620.
21
张德厚,陈义坤,刘大东. 脓毒症患者早期血小板功能变化及预后分析[J/CD]. 中华危重症医学杂志(电子版)201710(1):28-33.
22
张锦鑫,沈括,李俊杰,等. 脓毒症相关性急性肝损伤的流行病学特点及致病因素分析[J]. 中华急诊医学杂志202231(2):203-209.
23
田涛,李幼生. 脓毒症相关肝损害研究进展[J/CD]. 中华危重症医学杂志(电子版)202114(2):165-167.
24
Park SH, Park CJ, Lee BR, et al. Sepsis affects most routine and cell population data (CPD) obtained using the Sysmex XN-2000 blood cell analyzer: neutrophil-related CPD NE-SFL and NE-WY provide useful information for detecting sepsis[J]. Int J Lab Hematol, 2015, 37 (2): 190-198.
25
Montagnana M, Cervellin G, Meschi T, et al. The role of red blood cell distribution width in cardiovascular and thrombotic disorders[J]. Clin Chem Lab Med, 2011, 50 (4): 635-641.
26
高兰,李昊,刘红娟,等. 尿酸联合红细胞分布宽度对脓毒症患者短期结局的预测价值[J/CD]. 中华危重症医学杂志(电子版)201912(6):367-371.
27
McMillan DC. Systemic inflammation, nutritional status and survival in patients with cancer[J]. Curr Opin Clin Nutr Metab Care, 2009, 12 (3): 223-226.
28
Huang Z, Fu Z, Huang W, et al. Prognostic value of neutrophil-to-lymphocyte ratio in sepsis: a meta-analysis[J]. Am J Emerg Med, 2020, 38 (3): 641-647.
29
Boran OF, Yazar FM, Boran M, et al. The preseptic period and inflammatory markers in the prediction of the course of sepsis[J]. Med Sci Monit, 2018 (24): 3531-3539.
30
Ferrer R, Mateu X, Maseda E, et al. Non-oncotic properties of albumin. A multidisciplinary vision about the implications for critically ill patients[J]. Expert Rev Clin Pharmacol, 2018, 11 (2): 125-137.
31
Godinez-Vidal AR, Correa-Montoya A, Enriquez-Santos D, et al. Is albumin a predictor of severity and mortality in patients with abdominal sepsis?[J]. Cir Cir, 2019, 87 (5): 485-489.
32
Yin M, Si L, Qin W, et al. Predictive value of serum albumin level for the prognosis of severe sepsis without exogenous human albumin administration: a prospective cohort study[J]. J Intensive Care Med, 2018, 33 (12): 687-694.
33
Omiya K, Sato H, Sato T, et al. Albumin and fibrinogen kinetics in sepsis: a prospective observational study[J]. Crit Care, 2021, 25 (1): 436.
34
Klaude M, Mori M, Tjader I, et al. Protein metabolism and gene expression in skeletal muscle of critically ill patients with sepsis[J]. Clin Sci (Lond), 2012, 122 (3): 133-142.
35
Peerapornratana S, Manrique-Caballero CL, Gomez H, et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment[J]. Kidney Int, 2019, 96 (5): 1083-1099.
36
Li X, Zheng R, Zhang T, et al. Association between blood urea nitrogen and 30-day mortality in patients with sepsis: a retrospective analysis[J]. Ann Palliat Med, 2021, 10 (11): 11653-11663.
37
Han D, Zhang L, Zheng S, et al. Prognostic value of blood urea nitrogen/creatinine ratio for septic shock: an analysis of the MIMIC-Ⅲ clinical database[J]. Biomed Res Int, 2021: 5595042.
[1] 刘欢颜, 华扬, 贾凌云, 赵新宇, 刘蓓蓓. 颈内动脉闭塞病变管腔结构和血流动力学特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 809-815.
[2] 马艳波, 华扬, 刘桂梅, 孟秀峰, 崔立平. 中青年人颈动脉粥样硬化病变的相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 822-826.
[3] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[4] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[5] 吴方园, 孙霞, 林昌锋, 张震生. HBV相关肝硬化合并急性上消化道出血的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 45-47.
[6] 陈旭渊, 罗仕云, 李文忠, 李毅. 腺源性肛瘘经手术治疗后创面愈合困难的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 82-85.
[7] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[8] 莫闲, 杨闯. 肝硬化患者并发门静脉血栓危险因素的Meta分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 678-683.
[9] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[10] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[11] 陆猛桂, 黄斌, 李秋林, 何媛梅. 蜂蛰伤患者发生多器官功能障碍综合征的危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1010-1015.
[12] 李达, 张大涯, 陈润祥, 张晓冬, 黄士美, 陈晨, 曾凡, 陈世锔, 白飞虎. 海南省东方市幽门螺杆菌感染现状的调查与相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 858-864.
[13] 卓徐鹏, 刘颖, 任菁菁. 感染性疾病与老年人低蛋白血症的相关性研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 896-899.
[14] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[15] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
阅读次数
全文


摘要