切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2021, Vol. 14 ›› Issue (05) : 416 -419. doi: 10.3877/cma.j.issn.1674-6880.2021.05.013

综述

人工智能决策系统在脓毒症管理中的应用前景
袁琪茜1, 陈宇1, 杨晓玲1, 原娇娇1, 李敏1, 董晨明1,()   
  1. 1. 730030 兰州,兰州大学第二医院重症医学科
  • 收稿日期:2020-12-21 出版日期:2021-10-31
  • 通信作者: 董晨明
  • Received:2020-12-21 Published:2021-10-31
引用本文:

袁琪茜, 陈宇, 杨晓玲, 原娇娇, 李敏, 董晨明. 人工智能决策系统在脓毒症管理中的应用前景[J]. 中华危重症医学杂志(电子版), 2021, 14(05): 416-419.

1
Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349 (6245): 255-260.
2
Hazelzet JA. Can fuzzy logic make things more clear?[J]. Crit Care, 2009, 13 (1): 116.
3
Mahapatra D, Schueffler P, Tielbeek JA, et al. A supervised learning approach for Crohn's disease detection using higher-order image statistics and a novel shape asymmetry measure[J]. J Digit Imaging, 2013, 26 (5): 920-931.
4
Gottesman O, Johansson F, Komorowski M, et al. Guidelines for reinforcement learning in healthcare[J]. Nat Med, 2019, 25 (1): 16-18.
5
Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012[J]. Crit Care Med, 2013, 41 (2): 580-637.
6
Vincent JL. The clinical challenge of sepsis identification and monitoring[J]. PLoS Med, 2016, 13 (5): e1002022.
7
Anand V, Zhang Z, Kadri SS, et al. Epidemiology of quick sequential organ failure assessment criteria in undifferentiated patients and association with suspected infection and sepsis[J]. Chest, 2019, 156 (2): 289-297.
8
Quinten VM, van Meurs M, Ligtenberg JJ, et al. Prehospital antibiotics for sepsis: beyond mortality?[J]. Lancet Respir Med, 2018, 6 (3): e8.
9
Kamaleswaran R, Akbilgic O, Hallman MA, et al. Artificial intelligence: progress towards an intelligent clinical support system[J]. Pediatr Crit Care Med, 2019, 20 (4): 399.
10
van Wyk F, Khojandi A, Kamaleswaran R. Improving prediction performance using hierarchical analysis of real-time data: a sepsis case study[J]. IEEE J Biomed Health Inform, 2019, 23 (3): 978-986.
11
Barton C, Chettipally U, Zhou Y, et al. Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs[J]. Comput Biol Med, 2019 (109): 79-84.
12
Desautels T, Calvert J, Hoffman J, et al. Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach[J]. JMIR Med Inform, 2016, 4 (3): e28.
13
Mao Q, Jay M, Hoffman JL, et al. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU[J]. BMJ Open, 2018, 8 (1): e017833.
14
Taneja I, Reddy B, Damhorst G, et al. Combining biomarkers with EMR data to identify patients in different phases of sepsis[J]. Sci Rep, 2017, 7 (1): 10800.
15
Henry KE, Hager DN, Pronovost PJ, et al. A targeted real-time early warning score (TREWScore) for septic shock[J]. Sci Transl Med, 2015, 7 (299): 299ra122.
16
Mauri C, Principe L, Bracco S, et al. Identification by mass spectrometry and automated susceptibility testing from positive bottles: a simple, rapid, and standardized approach to reduce the turnaround time in the management of blood cultures[J]. BMC Infect Dis, 2017, 17 (1): 749.
17
Oonsivilai M, Mo Y, Luangasanatip N, et al. Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a children's hospital in Cambodia[J]. Wellcome Open Res, 2018 (3): 131.
18
Lamping F, Jack T, Rübsamen N, et al. Development and validation of a diagnostic model for early differentiation of sepsis and non-infectious SIRS in critically ill children - a data-driven approach using machine-learning algorithms[J]. BMC Pediatr, 2018, 18 (1): 112.
19
Islam MM, Nasrin T, Walther BA, et al. Prediction of sepsis patients using machine learning approach: a meta-analysis[J]. Comput Methods Programs Biomed, 2019 (170): 1-9.
20
Donnelly JP, Safford MM, Shapiro NI, et al. Application of the third international consensus definitions for sepsis (sepsis-3) classification: a retrospective population-based cohort study[J]. Lancet Infect Dis, 2017, 17 (6): 661-670.
21
Komorowski M, Celi LA, Badawi O, et al. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care[J]. Nat Med, 2018, 24 (11): 1716-1720.
22
Ospina-Tascón GA, Hernandez G, Alvarez I, et al. Effects of very early start of norepinephrine in patients with septic shock: a propensity score-based analysis[J]. Crit Care, 2020, 24 (1): 52.
23
Abbasi J. Artificial intelligence tools for sepsis and cancer[J]. JAMA, 2018, 320 (22): 2303.
24
高兰,李昊,刘红娟,等.尿酸联合红细胞分布宽度对脓毒症患者短期结局的预测价值[J/CD].中华危重症医学杂志(电子版)201912(6):367-371.
25
伊孙邦,胡雨峰,林素涵,等.不同时间段血乳酸水平对脓毒症院内死亡的预测价值比较:基于重症监护医学信息数据库[J/CD].中华危重症医学杂志(电子版)202013(1):39-43.
26
Lin PC, Huang HC, Komorowski M, et al. A machine learning approach for predicting urine output after fluid administration[J]. Comput Methods Programs Biomed, 2019 (177): 155-159.
27
Shimabukuro DW, Barton CW, Feldman MD, et al. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial[J]. BMJ Open Respir Res, 2017, 4 (1): e000234.
28
Peiffer-Smadja N, Rawson TM, Ahmad R, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications[J]. Clin Microbiol Infect, 2020, 26 (5): 584-595.
29
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316 (22): 2402-2410.
30
谢芳,薄禄龙,卞金俊.人工智能在重症医学领域的应用进展[J].国际麻醉学与复苏杂志201940(10):973-976.
31
Skyttberg N, Chen R, Blomqvist H, et al. Exploring vital sign data quality in electronic health records with focus on emergency care warning scores[J]. Appl Clin Inform, 2017, 8 (3): 880-892.
No related articles found!
阅读次数
全文


摘要