切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2021, Vol. 14 ›› Issue (05) : 408 -415. doi: 10.3877/cma.j.issn.1674-6880.2021.05.012

综述

基于组蛋白去乙酰化酶为靶标的相关药物在急危重症医学中的临床应用前景
贾天元1, 王世伟1, 罗成准1, 王子达1, 陆晓晔1, 杨倩1, 朱长清1,()   
  1. 1. 200120 上海,上海交通大学医学院附属仁济医院急诊科
  • 收稿日期:2021-04-22 出版日期:2021-10-31
  • 通信作者: 朱长清
  • 基金资助:
    国家自然科学基金面上项目(8197080211)
  • Received:2021-04-22 Published:2021-10-31
引用本文:

贾天元, 王世伟, 罗成准, 王子达, 陆晓晔, 杨倩, 朱长清. 基于组蛋白去乙酰化酶为靶标的相关药物在急危重症医学中的临床应用前景[J]. 中华危重症医学杂志(电子版), 2021, 14(05): 408-415.

1
Cecconi M, Evans L, Levy M, et al. Sepsis and septic shock[J]. Lancet, 2018, 392 (10141): 75-87.
2
Singer M. Critical illness and flat batteries[J]. Crit Care, 2017, 21 (Suppl 3): 309.
3
Schneider A, Albertsmeier M, Bottiger BW, et al. Post-resuscitation syndrome. Role of inflammation after cardiac arrest[J]. Anaesthesist, 2012, 61 (5): 424-436.
4
Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis[J]. J Mol Biol, 2004, 338 (1): 17-31.
5
Pickell Z, Williams AM, Alam HB, et al. Histone deacetylase inhibitors: a novel strategy for neuroprotection and cardioprotection following ischemia/ reperfusion injury[J]. J Am Heart Assoc, 2020, 9 (11): e016349.
6
曹端方,杨娜.组蛋白去乙酰化酶的结构及应用[J].生物化学与生物物理进展201542(11):978-993.
7
Porter NJ, Christianson DW. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases[J]. Curr Opin Struct Biol, 2019 (59): 9-18.
8
Shi W, Wei X, Wang Z, et al. HDAC9 exacerbates endothelial injury in cerebral ischaemia/reperfusion injury[J]. J Cell Mol Med, 2016, 20 (6): 1139-1149.
9
Hyndman KA, Kasztan M, Mendoza LD, et al. Dynamic changes in histone deacetylases following kidney ischemia-reperfusion injury are critical for promoting proximal tubule proliferation[J]. Am J Physiol Renal Physiol, 2019, 316 (5): F875-F888.
10
Han D, Wang J, Ma S, et al. SIRT1 as a promising novel therapeutic target for myocardial ischemia reperfusion injury and cardiometabolic disease[J]. Curr Drug Targets, 2017, 18 (15): 1746-1753.
11
Wang XX, Wang XL, Tong MM, et al. SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms[J]. Basic Res Cardiol, 2016, 111 (2): 13.
12
Liu L, Wang Q, Zhao B, et al. Exogenous nicotinamide adenine dinucleotide administration alleviates ischemia/reperfusion-induced oxidative injury in isolated rat hearts via Sirt5-SDH-succinate pathway[J]. Eur J Pharmacol, 2019 (858): 172520.
13
Diaz-Canestro C, Merlini M, Bonetti NR, et al. Sirtuin 5 as a novel target to blunt blood-brain barrier damage induced by cerebral ischemia/reperfusion injury[J]. Int J Cardiol, 2018 (260): 148-155.
14
Wang J, Koh HW, Zhou L, et al. Sirtuin 2 aggravates postischemic liver injury by deacetylating mitogen-activated protein kinase phosphatase-1[J]. Hepatology, 2017, 65 (1): 225-236.
15
Jeong Y, Du R, Zhu X, et al. Histone deacetylase isoforms regulate innate immune responses by deacetylating mitogen-activated protein kinase phosphatase-1[J]. J Leukoc Biol, 2014, 95 (4): 651-659.
16
von Knethen A, Brüne B. Histone deacetylation inhibitors as therapy concept in sepsis[J]. Int J Mol Sci, 2019, 20 (2): 346.
17
Zhang WB, Yang F, Wang Y, et al. Inhibition of HDAC6 attenuates LPS-induced inflammation in macrophages by regulating oxidative stress and suppressing the TLR4-MAPK/NF-kappaB pathways[J]. Biomed Pharmacother, 2019 (117): 109166.
18
Youn GS, Lee KW, Choi SY, et al. Overexpression of HDAC6 induces pro-inflammatory responses by regulating ROS-MAPK-NF-kappaB/AP-1 signaling pathways in macrophages[J]. Free Radic Biol Med, 2016 (97): 14-23.
19
Villagra A, Cheng F, Wang HW, et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance[J]. Nat Immunol, 2009, 10 (1): 92-100.
20
Yanginlar C, Logie C. HDAC11 is a regulator of diverse immune functions[J]. Biochim Biophys Acta Gene Regul Mech, 2018, 1861 (1): 54-59.
21
Cheng F, Lienlaf M, Perez-Villarroel P, et al. Divergent roles of histone deacetylase 6 (HDAC6) and histone deacetylase 11 (HDAC11) on the transcriptional regulation of IL10 in antigen presenting cells[J]. Mol Immunol, 2014, 60 (1): 44-53.
22
Gao Q, Zhu H. The overexpression of Sirtuin1 (SIRT1) alleviated lipopolysaccharide (LPS)-induced acute kidney injury (AKI) via inhibiting the activation of nucleotide-binding oligomerization domain-like receptors (NLR) family pyrin domain containing 3 (NLRP3) inflammasome[J]. Med Sci Monit, 2019 (25): 2718-2726.
23
Wei S, Gao Y, Dai X, et al. SIRT1-mediated HMGB1 deacetylation suppresses sepsis-associated acute kidney injury[J]. Am J Physiol Renal Physiol, 2019, 316 (1): F20-F31.
24
张建楠,刘文,昌广平,等.核苷酸结合寡聚化结构域样受体蛋白3炎性小体在脓毒症急性肾损伤大鼠肾脏组织的表达及其影响[J/CD].中华危重症医学杂志(电子版)202013(1):55-59.
25
李露兰,陈仲清,赵克森,等.去乙酰化酶sirtuins在脓毒症中的作用:有利还是有害?[J].中华危重病急救医学201931(1):23-28.
26
Wang X, Buechler NL, Woodruff AG, et al. Sirtuins and immuno-metabolism of sepsis[J]. Int J Mol Sci, 2018, 19 (9): 2738.
27
Wang X, Buechler NL, Long DL, et al. Cysteine thiol oxidation on SIRT2 regulates inflammation in obese mice with sepsis[J]. Inflammation, 2019, 42 (1): 156-169.
28
Qin K, Han C, Zhang H, et al. NAD+ dependent deacetylase Sirtuin 5 rescues the innate inflammatory response of endotoxin tolerant macrophages by promoting acetylation of p65[J]. J Autoimmun, 2017 (81): 120-129.
29
Zhao WY, Zhang L, Sui MX, et al. Protective effects of sirtuin 3 in a murine model of sepsis-induced acute kidney injury[J]. Sci Rep, 2016 (6): 33201.
30
Liu TF, Vachharajani V, Millet P, et al. Sequential actions of SIRT1-RELB-SIRT3 coordinate nuclearmitochondrial communication during immunometabolic adaptation to acute inflammation and sepsis[J]. J Biol Chem, 2015, 290 (1): 396-408.
31
Xu S, Gao Y, Zhang Q, et al. SIRT1/3 activation by resveratrol attenuates acute kidney injury in a septic rat model[J]. Oxid Med Cell Longev, 2016 (2016): 7296092.
32
Liang T, Fang H. Structure, functions and selective inhibitors of HDAC6[J]. Curr Top Med Chem, 2018, 18 (28): 2429-2447.
33
Jan JS, Chou YC, Cheng YW, et al. The novel HDAC8 inhibitor WK2-16 attenuates lipopolysaccharide-activated matrix metalloproteinase-9 expression in human monocytic cells and improves hypercytokinemia in vivo[J]. Int J Mol Sci, 2017, 18 (7): 1394.
34
Dai H, Sinclair DA, Ellis JL, et al. Sirtuin activators and inhibitors: promises, achievements, and challenges[J]. Pharmacol Ther, 2018 (188): 140-154.
35
Liu S, Ji S, Yu ZJ, et al. Structure-based discovery of new selective small-molecule sirtuin 5 inhibitors[J]. Chem Biol Drug Des, 2018, 91 (1): 257-268.
36
Singh AP, Singh R, Verma SS, et al. Health benefits of resveratrol: evidence from clinical studies[J]. Med Res Rev, 2019, 39 (5): 1851-1891.
37
Scisciola L, Sarno F, Carafa V, et al. Two novel SIRT1 activators, SCIC2 and SCIC2.1, enhance SIRT1-mediated effects in stress response and senescence[J]. Epigenetics, 2020, 15 (6-7): 664-683.
38
Huang Z, Zhao J, Deng W, et al. Identification of a cellularly active SIRT6 allosteric activator[J]. Nat Chem Biol, 2018, 14 (12): 1118-1126.
39
Yusoff SI, Roman M, Lai FY, et al. Systematic review and meta-analysis of experimental studies evaluating the organ protective effects of histone deacetylase inhibitors[J]. Transl Res, 2019 (205): 1-16.
40
Lee JH, Kim K, Jo YH, et al. Effect of valproic acid on survival and neurologic outcomes in an asphyxial cardiac arrest model of rats[J]. Resuscitation, 2013, 84 (10): 1443-1449.
41
Zhu S, Zhang Z, Jia LQ, et al. Valproic acid attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-pyroptosis pathways[J]. Neurochem Int, 2019 (124): 141-151.
42
Chang P, Weykamp M, Dennahy IS, et al. Histone deacetylase inhibitors: isoform selectivity improves survival in a hemorrhagic shock model[J]. J Trauma Acute Care Surg, 2018, 84 (5): 795-801.
43
Zhao B, Yuan Q, Hou JB, et al. Inhibition of HDAC3 ameliorates cerebral ischemia reperfusion injury in diabetic mice in vivo and in vitro[J]. J Diabetes Res, 2019 (2019): 8520856.
44
Nikseresht S, Khodagholi F, Ahmadiani A. Protective effects of ex-527 on cerebral ischemia-reperfusion injury through necroptosis signaling pathway attenuation[J]. J Cell Physiol, 2019, 234 (2): 1816-1826.
45
Leng Y, Wu Y, Lei S, et al. Inhibition of HDAC6 activity alleviates myocardial ischemia/reperfusion injury in diabetic rats: potential role of peroxiredoxin 1 acetylation and redox regulation[J]. Oxid Med Cell Longev, 2018 (2018): 9494052.
46
Chang Z, Li Y, He W, et al. Inhibition of histone deacetylase 6 restores intestinal tight junction in hemorrhagic shock[J]. J Trauma Acute Care Surg, 2016, 81 (3): 512-519.
47
Liu FC, Tsai HI, Yu HP. Organ-protective effects of red wine extract, resveratrol, in oxidative stress-mediated reperfusion injury[J]. Oxid Med Cell Longev, 2015 (2015): 568634.
48
Sims CA, Baur JA. The grapes and wrath: using resveratrol to treat the pathophysiology of hemorrhagic shock[J]. Ann N Y Acad Sci, 2017, 1403 (1): 70-81.
49
Zhai M, Li B, Duan W, et al. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis[J]. J Pineal Res, 2017, 63 (2): e12419.
50
Zhang H, Wu Q, Wan Z, et al. Preconditioning but not postconditioning treatment with resveratrol substantially ameliorates postresuscitation myocardial dysfunction through the PI3K/Akt signaling pathway[J]. Mol Med Rep, 2019, 20 (2): 1250-1258.
51
Cheng X, Liu Z, Liu B, et al. Selective histone deacetylase 6 inhibition prolongs survival in a lethal two-hit model[J]. J Surg Res, 2015, 197 (1): 39-44.
52
Deng Q, Zhao T, Pan B, et al. Protective effect of tubastatin A in CLP-induced lethal sepsis[J]. Inflammation, 2018, 41 (6): 2101-2109.
53
Zhao T, Li Y, Liu B, et al. Inhibition of histone deacetylase 6 restores innate immune cells in the bone marrow in a lethal septic model[J]. J Trauma Acute Care Surg, 2016, 80 (1): 34-40; discussion 40-41.
54
Wang X, Buechler NL, Yoza BK, et al. Resveratrol attenuates microvascular inflammation in sepsis via SIRT-1-induced modulation of adhesion molecules in ob/ob mice[J]. Obesity (Silver Spring), 2015, 23 (6): 1209-1217.
55
An R, Zhao L, Xu J, et al. Resveratrol alleviates sepsisinduced myocardial injury in rats by suppressing neutrophil accumulation, the induction of TNF-α and myocardial apoptosis via activation of Sirt1[J]. Mol Med Rep, 2016, 14 (6): 5297-5303.
56
Zhu Y, Wang K, Ma Z, et al. SIRT1 activation by butein attenuates sepsis-induced brain injury in mice subjected to cecal ligation and puncture via alleviating inflammatory and oxidative stress[J]. Toxicol Appl Pharmacol, 2019 (363): 34-46.
57
Khader A, Yang WL, Hansen LW, et al. SRT1720, a sirtuin 1 activator, attenuates organ injury and inflammation in sepsis[J]. J Surg Res, 2017 (219): 288-295.
58
Vachharajani VT, Liu T, Brown CM, et al. SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome[J]. J Leukoc Biol, 2014, 96 (5): 785-796.
No related articles found!
阅读次数
全文


摘要