1 |
Cecconi M, Evans L, Levy M, et al. Sepsis and septic shock[J]. Lancet, 2018, 392 (10141): 75-87.
|
2 |
Singer M. Critical illness and flat batteries[J]. Crit Care, 2017, 21 (Suppl 3): 309.
|
3 |
Schneider A, Albertsmeier M, Bottiger BW, et al. Post-resuscitation syndrome. Role of inflammation after cardiac arrest[J]. Anaesthesist, 2012, 61 (5): 424-436.
|
4 |
Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis[J]. J Mol Biol, 2004, 338 (1): 17-31.
|
5 |
Pickell Z, Williams AM, Alam HB, et al. Histone deacetylase inhibitors: a novel strategy for neuroprotection and cardioprotection following ischemia/ reperfusion injury[J]. J Am Heart Assoc, 2020, 9 (11): e016349.
|
6 |
曹端方,杨娜.组蛋白去乙酰化酶的结构及应用[J].生物化学与生物物理进展,2015,42(11):978-993.
|
7 |
Porter NJ, Christianson DW. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases[J]. Curr Opin Struct Biol, 2019 (59): 9-18.
|
8 |
Shi W, Wei X, Wang Z, et al. HDAC9 exacerbates endothelial injury in cerebral ischaemia/reperfusion injury[J]. J Cell Mol Med, 2016, 20 (6): 1139-1149.
|
9 |
Hyndman KA, Kasztan M, Mendoza LD, et al. Dynamic changes in histone deacetylases following kidney ischemia-reperfusion injury are critical for promoting proximal tubule proliferation[J]. Am J Physiol Renal Physiol, 2019, 316 (5): F875-F888.
|
10 |
Han D, Wang J, Ma S, et al. SIRT1 as a promising novel therapeutic target for myocardial ischemia reperfusion injury and cardiometabolic disease[J]. Curr Drug Targets, 2017, 18 (15): 1746-1753.
|
11 |
Wang XX, Wang XL, Tong MM, et al. SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms[J]. Basic Res Cardiol, 2016, 111 (2): 13.
|
12 |
Liu L, Wang Q, Zhao B, et al. Exogenous nicotinamide adenine dinucleotide administration alleviates ischemia/reperfusion-induced oxidative injury in isolated rat hearts via Sirt5-SDH-succinate pathway[J]. Eur J Pharmacol, 2019 (858): 172520.
|
13 |
Diaz-Canestro C, Merlini M, Bonetti NR, et al. Sirtuin 5 as a novel target to blunt blood-brain barrier damage induced by cerebral ischemia/reperfusion injury[J]. Int J Cardiol, 2018 (260): 148-155.
|
14 |
Wang J, Koh HW, Zhou L, et al. Sirtuin 2 aggravates postischemic liver injury by deacetylating mitogen-activated protein kinase phosphatase-1[J]. Hepatology, 2017, 65 (1): 225-236.
|
15 |
Jeong Y, Du R, Zhu X, et al. Histone deacetylase isoforms regulate innate immune responses by deacetylating mitogen-activated protein kinase phosphatase-1[J]. J Leukoc Biol, 2014, 95 (4): 651-659.
|
16 |
von Knethen A, Brüne B. Histone deacetylation inhibitors as therapy concept in sepsis[J]. Int J Mol Sci, 2019, 20 (2): 346.
|
17 |
Zhang WB, Yang F, Wang Y, et al. Inhibition of HDAC6 attenuates LPS-induced inflammation in macrophages by regulating oxidative stress and suppressing the TLR4-MAPK/NF-kappaB pathways[J]. Biomed Pharmacother, 2019 (117): 109166.
|
18 |
Youn GS, Lee KW, Choi SY, et al. Overexpression of HDAC6 induces pro-inflammatory responses by regulating ROS-MAPK-NF-kappaB/AP-1 signaling pathways in macrophages[J]. Free Radic Biol Med, 2016 (97): 14-23.
|
19 |
Villagra A, Cheng F, Wang HW, et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance[J]. Nat Immunol, 2009, 10 (1): 92-100.
|
20 |
Yanginlar C, Logie C. HDAC11 is a regulator of diverse immune functions[J]. Biochim Biophys Acta Gene Regul Mech, 2018, 1861 (1): 54-59.
|
21 |
Cheng F, Lienlaf M, Perez-Villarroel P, et al. Divergent roles of histone deacetylase 6 (HDAC6) and histone deacetylase 11 (HDAC11) on the transcriptional regulation of IL10 in antigen presenting cells[J]. Mol Immunol, 2014, 60 (1): 44-53.
|
22 |
Gao Q, Zhu H. The overexpression of Sirtuin1 (SIRT1) alleviated lipopolysaccharide (LPS)-induced acute kidney injury (AKI) via inhibiting the activation of nucleotide-binding oligomerization domain-like receptors (NLR) family pyrin domain containing 3 (NLRP3) inflammasome[J]. Med Sci Monit, 2019 (25): 2718-2726.
|
23 |
Wei S, Gao Y, Dai X, et al. SIRT1-mediated HMGB1 deacetylation suppresses sepsis-associated acute kidney injury[J]. Am J Physiol Renal Physiol, 2019, 316 (1): F20-F31.
|
24 |
张建楠,刘文,昌广平,等.核苷酸结合寡聚化结构域样受体蛋白3炎性小体在脓毒症急性肾损伤大鼠肾脏组织的表达及其影响[J/CD].中华危重症医学杂志(电子版),2020,13(1):55-59.
|
25 |
李露兰,陈仲清,赵克森,等.去乙酰化酶sirtuins在脓毒症中的作用:有利还是有害?[J].中华危重病急救医学,2019,31(1):23-28.
|
26 |
Wang X, Buechler NL, Woodruff AG, et al. Sirtuins and immuno-metabolism of sepsis[J]. Int J Mol Sci, 2018, 19 (9): 2738.
|
27 |
Wang X, Buechler NL, Long DL, et al. Cysteine thiol oxidation on SIRT2 regulates inflammation in obese mice with sepsis[J]. Inflammation, 2019, 42 (1): 156-169.
|
28 |
Qin K, Han C, Zhang H, et al. NAD+ dependent deacetylase Sirtuin 5 rescues the innate inflammatory response of endotoxin tolerant macrophages by promoting acetylation of p65[J]. J Autoimmun, 2017 (81): 120-129.
|
29 |
Zhao WY, Zhang L, Sui MX, et al. Protective effects of sirtuin 3 in a murine model of sepsis-induced acute kidney injury[J]. Sci Rep, 2016 (6): 33201.
|
30 |
Liu TF, Vachharajani V, Millet P, et al. Sequential actions of SIRT1-RELB-SIRT3 coordinate nuclearmitochondrial communication during immunometabolic adaptation to acute inflammation and sepsis[J]. J Biol Chem, 2015, 290 (1): 396-408.
|
31 |
Xu S, Gao Y, Zhang Q, et al. SIRT1/3 activation by resveratrol attenuates acute kidney injury in a septic rat model[J]. Oxid Med Cell Longev, 2016 (2016): 7296092.
|
32 |
Liang T, Fang H. Structure, functions and selective inhibitors of HDAC6[J]. Curr Top Med Chem, 2018, 18 (28): 2429-2447.
|
33 |
Jan JS, Chou YC, Cheng YW, et al. The novel HDAC8 inhibitor WK2-16 attenuates lipopolysaccharide-activated matrix metalloproteinase-9 expression in human monocytic cells and improves hypercytokinemia in vivo[J]. Int J Mol Sci, 2017, 18 (7): 1394.
|
34 |
Dai H, Sinclair DA, Ellis JL, et al. Sirtuin activators and inhibitors: promises, achievements, and challenges[J]. Pharmacol Ther, 2018 (188): 140-154.
|
35 |
Liu S, Ji S, Yu ZJ, et al. Structure-based discovery of new selective small-molecule sirtuin 5 inhibitors[J]. Chem Biol Drug Des, 2018, 91 (1): 257-268.
|
36 |
Singh AP, Singh R, Verma SS, et al. Health benefits of resveratrol: evidence from clinical studies[J]. Med Res Rev, 2019, 39 (5): 1851-1891.
|
37 |
Scisciola L, Sarno F, Carafa V, et al. Two novel SIRT1 activators, SCIC2 and SCIC2.1, enhance SIRT1-mediated effects in stress response and senescence[J]. Epigenetics, 2020, 15 (6-7): 664-683.
|
38 |
Huang Z, Zhao J, Deng W, et al. Identification of a cellularly active SIRT6 allosteric activator[J]. Nat Chem Biol, 2018, 14 (12): 1118-1126.
|
39 |
Yusoff SI, Roman M, Lai FY, et al. Systematic review and meta-analysis of experimental studies evaluating the organ protective effects of histone deacetylase inhibitors[J]. Transl Res, 2019 (205): 1-16.
|
40 |
Lee JH, Kim K, Jo YH, et al. Effect of valproic acid on survival and neurologic outcomes in an asphyxial cardiac arrest model of rats[J]. Resuscitation, 2013, 84 (10): 1443-1449.
|
41 |
Zhu S, Zhang Z, Jia LQ, et al. Valproic acid attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-pyroptosis pathways[J]. Neurochem Int, 2019 (124): 141-151.
|
42 |
Chang P, Weykamp M, Dennahy IS, et al. Histone deacetylase inhibitors: isoform selectivity improves survival in a hemorrhagic shock model[J]. J Trauma Acute Care Surg, 2018, 84 (5): 795-801.
|
43 |
Zhao B, Yuan Q, Hou JB, et al. Inhibition of HDAC3 ameliorates cerebral ischemia reperfusion injury in diabetic mice in vivo and in vitro[J]. J Diabetes Res, 2019 (2019): 8520856.
|
44 |
Nikseresht S, Khodagholi F, Ahmadiani A. Protective effects of ex-527 on cerebral ischemia-reperfusion injury through necroptosis signaling pathway attenuation[J]. J Cell Physiol, 2019, 234 (2): 1816-1826.
|
45 |
Leng Y, Wu Y, Lei S, et al. Inhibition of HDAC6 activity alleviates myocardial ischemia/reperfusion injury in diabetic rats: potential role of peroxiredoxin 1 acetylation and redox regulation[J]. Oxid Med Cell Longev, 2018 (2018): 9494052.
|
46 |
Chang Z, Li Y, He W, et al. Inhibition of histone deacetylase 6 restores intestinal tight junction in hemorrhagic shock[J]. J Trauma Acute Care Surg, 2016, 81 (3): 512-519.
|
47 |
Liu FC, Tsai HI, Yu HP. Organ-protective effects of red wine extract, resveratrol, in oxidative stress-mediated reperfusion injury[J]. Oxid Med Cell Longev, 2015 (2015): 568634.
|
48 |
Sims CA, Baur JA. The grapes and wrath: using resveratrol to treat the pathophysiology of hemorrhagic shock[J]. Ann N Y Acad Sci, 2017, 1403 (1): 70-81.
|
49 |
Zhai M, Li B, Duan W, et al. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis[J]. J Pineal Res, 2017, 63 (2): e12419.
|
50 |
Zhang H, Wu Q, Wan Z, et al. Preconditioning but not postconditioning treatment with resveratrol substantially ameliorates postresuscitation myocardial dysfunction through the PI3K/Akt signaling pathway[J]. Mol Med Rep, 2019, 20 (2): 1250-1258.
|
51 |
Cheng X, Liu Z, Liu B, et al. Selective histone deacetylase 6 inhibition prolongs survival in a lethal two-hit model[J]. J Surg Res, 2015, 197 (1): 39-44.
|
52 |
Deng Q, Zhao T, Pan B, et al. Protective effect of tubastatin A in CLP-induced lethal sepsis[J]. Inflammation, 2018, 41 (6): 2101-2109.
|
53 |
Zhao T, Li Y, Liu B, et al. Inhibition of histone deacetylase 6 restores innate immune cells in the bone marrow in a lethal septic model[J]. J Trauma Acute Care Surg, 2016, 80 (1): 34-40; discussion 40-41.
|
54 |
Wang X, Buechler NL, Yoza BK, et al. Resveratrol attenuates microvascular inflammation in sepsis via SIRT-1-induced modulation of adhesion molecules in ob/ob mice[J]. Obesity (Silver Spring), 2015, 23 (6): 1209-1217.
|
55 |
An R, Zhao L, Xu J, et al. Resveratrol alleviates sepsisinduced myocardial injury in rats by suppressing neutrophil accumulation, the induction of TNF-α and myocardial apoptosis via activation of Sirt1[J]. Mol Med Rep, 2016, 14 (6): 5297-5303.
|
56 |
Zhu Y, Wang K, Ma Z, et al. SIRT1 activation by butein attenuates sepsis-induced brain injury in mice subjected to cecal ligation and puncture via alleviating inflammatory and oxidative stress[J]. Toxicol Appl Pharmacol, 2019 (363): 34-46.
|
57 |
Khader A, Yang WL, Hansen LW, et al. SRT1720, a sirtuin 1 activator, attenuates organ injury and inflammation in sepsis[J]. J Surg Res, 2017 (219): 288-295.
|
58 |
Vachharajani VT, Liu T, Brown CM, et al. SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome[J]. J Leukoc Biol, 2014, 96 (5): 785-796.
|