切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2021, Vol. 14 ›› Issue (05) : 374 -379. doi: 10.3877/cma.j.issn.1674-6880.2021.05.005

论著

亚低温治疗对心肺复苏后兔脑组织中基质金属蛋白酶9和神经元特异性烯醇化酶水平及脑复苏的影响
祝雅1, 赵晖1,(), 董莲莲1, 金燕1   
  1. 1. 310016 杭州,浙江大学医学院附属邵逸夫医院急诊科
  • 收稿日期:2020-08-26 出版日期:2021-10-31
  • 通信作者: 赵晖
  • 基金资助:
    浙江省医药卫生科技计划项目(2018KY496)

Effect of subcryogenic therapy on matrix metalloproteinase-9, neuron-specific enolase and cerebral resuscitation in rabbit brain tissue after cardiopulmonary resuscitation

Ya Zhu1, Hui Zhao1,(), Lianlian Dong1, Yan Jin1   

  1. 1. Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
  • Received:2020-08-26 Published:2021-10-31
  • Corresponding author: Hui Zhao
引用本文:

祝雅, 赵晖, 董莲莲, 金燕. 亚低温治疗对心肺复苏后兔脑组织中基质金属蛋白酶9和神经元特异性烯醇化酶水平及脑复苏的影响[J]. 中华危重症医学杂志(电子版), 2021, 14(05): 374-379.

Ya Zhu, Hui Zhao, Lianlian Dong, Yan Jin. Effect of subcryogenic therapy on matrix metalloproteinase-9, neuron-specific enolase and cerebral resuscitation in rabbit brain tissue after cardiopulmonary resuscitation[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2021, 14(05): 374-379.

目的

探讨亚低温治疗对心肺复苏后兔脑缺血再灌注损伤和继发脑水肿的影响。

方法

建立兔心脏骤停模型,将恢复自主循环的40只家兔分为常温组和亚低温组,每组各20只。复苏后72 h,根据兔大脑神经功能评分表对每组各存活的18只家兔进行评分,然后开颅取左侧大脑组织用于制作病理切片,采用免疫组织化学染色法测定家兔左侧大脑组织中基质金属蛋白酶9(MMP-9)和神经元特异性烯醇化酶(NSE)的表达水平。比较两组家兔心脏骤停前(T0)、心肺复苏成功后开始亚低温时(心肺复苏后0 h即T1)、达到亚低温目标体温时(心肺复苏后2 h即T2)、复温前(心肺复苏后14 h即T3)、恢复常温后(心肺复苏后24 h即T4)的心率、平均动脉压及氧饱和度。

结果

常温组和亚低温组家兔T0、T1、T2、T3、T4时间点心率比较,差异有统计学意义(F = 13.155,P = 0.001),且亚低温组家兔T2 [(185 ± 14)次/min vs.(209 ± 8)次/min]和T3 [(182 ± 12)次/min vs.(205 ± 8)次/min]时间点心率均较同时间点常温组显著降低(P均< 0.05)。心肺复苏72 h后,亚低温组家兔的神经功能缺陷评分[(35 ± 23)分vs.(56 ± 28)分]、MMP-9[(1 603 ± 573)μm2 vs.(3 633 ± 1 571)μm2]及NSE [(2 075 ± 564)μm2 vs.(3 532 ± 988)μm2]阳性面积均较常温组显著降低(t = 2.398、4.498、4.697,P = 0.022、0.001、0.001)。

结论

亚低温治疗可降低心肺复苏后兔脑组织中MMP-9和NSE的表达水平,促进脑功能恢复。

Objective

To investigate the effect of subcryogenic therapy on rabbit cerebral ischemia and reperfusion injury and secondary cerebral edema after cardiopulmonary resuscitation.

Methods

A rabbit cardiac arrest model was established, and then 40 rabbits recovering the autonomous cycle were divided into a normal temperature group and a sub-low temperature group, with 20 rabbits in each group. After resuscitation for 72 h, 18 surviving rabbits in each group were evaluated according to the brain neurological function rating scale. The left side of brain tissue was cut open to make pathological sections. The expression levels of matrix metalloproteinase-9 (MMP-9) and neuron-specific enolase (NSE) in the left cerebral tissue of rabbits were determined by immunohistochemical staining. The heart rate, mean arterial pressure and oxygen saturation before cardiac arrest (T0), after successful cardiopulmonary resuscitation(0 h after cardiopulmonary resuscitation, T1), after reaching the target body temperature of mild hypothermia (2 h after cardiopulmonary resuscitation, T2), before rewarming (14 h after cardiopulmonary resuscitation, T3) and after returning to normal temperature (24 h after cardiopulmonary resuscitation, T4) were compared between these two groups.

Results

There was a significant difference in the heart rate between the normal temperature group and sub-low temperature group at T0, T1, T2, T3 and T4 time points (F = 13.155, P = 0.001). The heart rates at T2 [(185 ± 14) beats/min vs. (209 ± 8) beats/min] and T3 [(182 ± 12) beats/min vs. (205 ± 8) beats/min] time points in the sub-low temperature group were significantly lower than those at the same time point in the normal temperature group (both P < 0.05). After 72 h of cardiopulmonary resuscitation, the neurological deficit score [(35 ± 23) vs. (56 ± 28)] and the positive area of MMP-9 [(1 603 ± 573) μm2 vs. (3 633 ± 1 571) μm2] and NSE [(2 075 ± 564) μm2 vs. (3 532 ± 988) μm2] in the sub-low temperature group were significantly lower than those in the normal temperature group (t = 2.398, 4.498, 4.697; P = 0.022, 0.001, 0.001).

Conclusion

Subcryogenic therapy can decrease the expression of MMP-9 and NSE in the brain tissue of rabbits after cardiopulmonary resuscitation and promote the recovery of brain function.

表1 常温组和亚低温组家兔不同时间点心率、平均动脉压及氧饱和度比较(±s
图1 常温组和亚低温组家兔脑组织中NSE和MMP-9免疫组织化学染色结果
1
Madl C, Kramer L, Domanovits H, et al. Improved outcome prediction in unconscious cardiac arrest survivors with sensory evoked potentials compared with clinical assessment[J]. Crit Care Med, 2000, 28 (3): 721-726.
2
Hazinski MF, Nolan JP, Aickin R, et al. Part 1: executive summary: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations[J]. Circulation, 2015, 132 (16 Suppl 1): S2-S39.
3
Ishii D, Matsushige T, Okazaki T, et al. Marked changes in blood-brain barrier biomarkers after direct bypass surgery for moyamoya angiopathy: preliminary study[J]. World Neurosurg, 2018 (120): e611-e616.
4
Vondrakova D, Kruger A, Janotka M, et al. Association of neuron-specific enolase values with outcomes in cardiac arrest survivors is dependent on the time of sample collection[J]. Crit Care, 2017, 21 (1): 172.
5
Nielsen N, Wetterslev J, Cronberg T, et al. Targeted temperature management at 33 ℃ versus 36 ℃ after cardiac arrest[J]. N Engl J Med, 2013, 369 (23): 2197-2206.
6
Zhang H, Zhang JJ, Mei YW, et al. Effects of immediate and delayed mild hypothermia on endogenous antioxidant enzymes and energy metabolites following global cerebral ischemia[J]. Chin Med J (Engl), 2011, 124 (17): 2764-2766.
7
何明丰,张英俭,黎练达,等.气管夹闭窒息法家兔心脏骤停模型的研究[J].中华实验外科杂志200421(3):375-376.
8
Scirica BM. Therapeutic hypothermia after cardiac arrest[J]. Circulation, 2013, 127 (2): 244-250.
9
Rittenberger JC, Callaway CW, et al. Temperature management and modern post-cardiac arrest care[J]. N Engl J Med, 2013, 369 (23): 2262-2263.
10
Baker AJ, Zornow MH, Grafe MR, et al. Hypothermia prevents ischemia-induced increases in hippocampal glycine concentrations in rabbits[J]. Stroke, 1991, 22 (5): 666-673.
11
Wei X, Duan L, Bai L, et al. Effects of exogenous hydrogen sulfide on brain metabolism and early neurological function in rabbits after cardiac arrest[J]. Intensive Care Med, 2012, 38 (11): 1877-1885.
12
Schneider A, Bottiger BW, Popp E. Cerebral resuscitation after cardiocirculatory arrest[J]. Anesth Analg, 2009, 108 (3): 971-979.
13
王雪蕊,郭玉红,刘清泉.重症患者脑功能评价的临床应用及研究进展[J/CD].中华危重症医学杂志(电子版)202013(6):471-474.
14
马红,荣玉涛,吴文娟,等.脑缺血再灌注后MMP-9表达与血脑屏障变化的MRI实验研究[J].临床放射学杂志200827(12):1763-1766.
15
Avolio C, Filippi M, Tortorella C, et al. Serum MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios in multiple sclerosis: relationships with different magnetic resonance imaging measures of disease activity during IFN-beta-1a treatment[J]. Mult Scler, 2005, 11 (4): 441-446.
16
Yilmaz G, Granger DN. Cell adhesion molecules and ischemic stroke[J]. Neurol Res, 2008, 30 (8): 783-793.
17
Park KP, Rosell A, Foerch C, et al. Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats[J]. Stroke, 2009, 40 (8): 2836-2842.
18
Sarami Foroshani M, Sobhani ZS, Mohammadi MT, et al. Fullerenol nanoparticles decrease blood-brain barrier interruption and brain. Edema during cerebral ischemia-reperfusion injury probably by reduction of interleukin-6 and matrix metalloproteinase-9 transcription[J]. J Stroke Cerebrovasc Dis, 2018, 27 (11): 3053-3065.
19
杨伊林,官卫,夏为民,等.血清神经元特异性烯醇化酶对重型颅脑损伤患者的预后评价[J].中华神经医学杂志20032(5):361-363.
20
Choi S, Park K, Ryu S, et al. Use of S-100B, NSE, CRP and ESR to predict neurological outcomes in patients with return of spontaneous circulation and treated with hypothermia[J]. Emerg Med J, 2016, 33 (10): 690-695.
21
Zandbergen EG, Hijdra A, Koelman JH, et al. Prediction of poor outcome within the first 3 days of postanoxic coma[J]. Neurology, 2006, 66 (1): 62-68.
22
Panchal AR, Bartos JA, Cabannas JG, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2020, 142 (16_suppl_2): S366-S468.
23
Soar J, Nolan JP, Bottiger BW, et al. European Resuscitation Council guidelines for resuscitation 2015: section 3. Adult advanced life support[J]. Resuscitation, 2015 (95): 100-147.
24
Morrison LJ, Deakin CD, Morley PT, et al. Part 8: advanced life support: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations[J]. Circulation, 2010, 122 (16 Suppl 2): S345-S421.
25
Link MS, Berkow LC, Kudenchuk PJ, et al. Part 7: adult advanced cardiovascular life support: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2015, 132 (18 Suppl 2): S444-S464.
26
Clinkard D, Cameron A, Howes D, et al. Targeted temperature management: it is not yet time to change your target temperature[J]. CJEM, 2015, 17 (6): 706-818.
27
Golan E, Barrett K, Alali AS, et al. Predicting neurologic outcome after targeted temperature management for cardiac arrest: systematic review and meta-analysis[J]. Crit Care Med, 2014, 42 (8): 1919-1930.
28
雷远丽,卢颖如,陈寿权,等.温州地区开展亚低温治疗对心肺复苏后昏迷患者预后影响的研究[J/CD].中华危重症医学杂志(电子版)201811(5):304-309.
29
Smith TL, Bleck TP. Hypothermia and neurologic outcome in patients following cardiac arrest: should we be hot to cool off our patients[J]. Crit Care, 2002, 6 (5): 377-380.
30
Fairchild KD, Singh IS, Carter HC, et al. Hypothermia enhances phosphorylation of IκB kinase and prolongs nuclear localization of NF-κB in lipoopolysaccharide-activated macrophages[J]. Am J Physiol Cell Physiol, 2005, 289 (5): C1114-C1121.
31
Alzaga AG, Cerdan M, Varon J. Therapeutic hypothermia[J]. Resuscitation, 2006, 70 (3): 369-380.
32
Nordmark J, Enblad P, Rubertsson S. Cerebral energy failure following experimental cardiac arrest hypothermia treatment reduces secondary lactate/pyruvate-ratio increase[J]. Resuscitation, 2009, 80 (5): 573-579.
33
Kuo JR, Lo CJ, Chang CP, et al. Attenuation of brain nitrostative and oxidative damage by brain cooling during experimental traumatic brain injury[J]. J Biomed Biotechnol, 2011 (2011): 145214.
34
Eberspacher E, Werner C, Engelhard K, et al. Long-term effects of hypothermia on neuronal cell death and the concentration of apoptotic proteins after incomplete cerebral ischemia and reperfusion in rats[J]. Acta Anaesthesiol Scand, 2005, 49 (4): 477-487.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 刘立, 陈诚, 李新科, 刘凯, 屠昌明. 血清IL-6、hs-CRP、MMP-9联合检测在腹股沟疝无张力修补术预后评价中的价值分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 405-409.
[3] 赵文思, 曾艳峰. 血清神经元特异性烯醇化酶联合CT检查对肺尘病诊断意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 67-69.
[4] 左剑辉, 陈宇, 尹纯同. Cho/Cr比值联合NSE对肺癌脑转移/骨转移的预后意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 39-42.
[5] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[6] 于洋, 刘孝洁, 王丽娟, 高宇晨, 丁瑶, 敖虎山. 新冠肺炎常态化条件下心肺复苏培训模式初探[J]. 中华临床医师杂志(电子版), 2023, 17(04): 483-486.
[7] 李秋琼, 薛静, 王敏, 陈芬, 肖美芳. NSE、SIL-2R、TNF-α检测对小儿病毒性脑膜炎与细菌性脑膜炎的诊断价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 303-307.
[8] 倪争, 朱英华. 视频辅助调度员指导院外心肺复苏的研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(09): 842-846.
[9] 王毅欣, 郑平靖, 黄显雄, 柏杨, 杜果果, 张华. 旁观者实施心肺复苏行为意向的研究现状及启示[J]. 中华临床医师杂志(电子版), 2022, 16(09): 828-832.
[10] 孙兵, 丁鸭锁, 尹春, 刘泽昊, 常浩. 血清Netrin-1和NSE对急性缺血性脑卒中早期神经功能恶化及预后的预测价值[J]. 中华临床医师杂志(电子版), 2022, 16(03): 258-263.
[11] 梅冬兰, 凌受毅, 梅冰, 邵光亮, 孙志辉. 院外自动心肺复苏机序贯骨髓腔输液在抢救呼吸心跳骤停患者中的应用价值[J]. 中华卫生应急电子杂志, 2023, 09(03): 159-162.
[12] 潘鑫, 王忻, 王超, 顾慧, 吴敏, 唐加波, 崔恒熙, 李政. 亚低温治疗在脑卒中院前急救中的应用[J]. 中华卫生应急电子杂志, 2023, 09(03): 155-158.
[13] 章楠, 盛雪立, 邵俊, 方诗园, 王芳, 朱娴, 周斌捷. 院前恢复自主循环的院外心脏骤停患者流行病学研究[J]. 中华卫生应急电子杂志, 2022, 08(06): 326-330.
[14] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
[15] 吴仔弦, 杨思敏, 周保纯. 心搏骤停后综合征患者神经功能预后评估研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(03): 202-205.
阅读次数
全文


摘要