1 |
Cecconi M, Evans L, Levy M, et al. Sepsis and septic shock[J]. Lancet, 2018, 392 (10141): 75-87.
|
2 |
van der Poll T, van de Veerdonk FL, Scicluna BP, et al. The immunopathology of sepsis and potential therapeutic targets[J]. Nat Rev Immuno, 2017, 17 (7): 407-420.
|
3 |
Hattori Y, Hattori K, Suzuki T, et al. Recent advances in the pathophysiology and molecular basis of sepsis-associated organ dysfunction: novel therapeutic implications and challenges[J]. Pharmacol Ther, 2017 (177): 56-66.
|
4 |
Merx MW, Weber C. Sepsis and the heart[J]. Circulation, 2007, 116 (7): 793-802.
|
5 |
Hasan GM, Al-Eyadhy AA, Temsah MA, et al. Feasibility and efficacy of sepsis management guidelines in a pediatric intensive care unit in Saudi Arabia: a quality improvement initiative[J]. Int J Qual Health Care, 2018, 30 (8): 587-593.
|
6 |
Keck T, Balcom JH 4th, Fernández-del Castillo C, et al. Matrix metalloproteinase-9 promotes neutrophil migration and alveolar capillary leakage in pancreatitis-associated lung injury in the rat[J]. Gastroenterology, 2002, 122 (1): 188-201.
|
7 |
Toledo AG, Golden G, Campos AR, et al. Proteomic atlas of organ vasculopathies triggered by staphylococcus aureus sepsis[J]. Nat Commun, 2019, 10 (1): 4656.
|
8 |
Heun Y, Pircher J, Czermak T, et al. Inactivation of the tyrosine phosphatase SHP-2 drives vascular dysfunction in sepsis[J]. EBioMedicine, 2019 (42): 120-132.
|
9 |
Feng L, Ren J, Li Y, et al. Resveratrol protects against isoproterenol induced myocardial infarction in rats through VEGF-B/AMPK/eNOS/NO signalling pathway[J]. Free Radic Res, 2019, 53 (1): 82-93.
|
10 |
Bollmann F, Art J, Henke J, et al. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity[J]. Nucleic Acids Res, 2014, 42 (20): 12555-12569.
|
11 |
Liu B, Ghosh S, Yang X, et al. Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria[J]. Cell Metab, 2012, 16 (6): 738-750.
|
12 |
Coté CD, Rasmussen BA, Duca FA, et al. Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network[J]. Nat Med, 2015, 21 (5): 498-505.
|
13 |
Alghetaa H, Mohammed A, Sultan M, et al. Resveratrol protects mice against SEB-induced acute lung injury and mortality by miR-193a modulation that targets TGF-β signalling[J]. J Cell Mol Med, 2018, 22 (5): 2644-2655.
|
14 |
Armstrong SM, Mubareka S, Lee WL. The lung microvascular endothelium as a therapeutic target in severe influenza[J]. Antiviral Res, 2013, 99 (2): 113-118.
|
15 |
Schnoor M, García Ponce A, Vadillo E, et al. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis[J]. Cell Mol Life Sci, 2017, 74 (11): 1985-1997.
|
16 |
Kohno T, Urao N, Ashino T, et al. IQGAP1 links PDGF receptor-β signal to focal adhesions involved in vascular smooth muscle cell migration: role in neointimal formation after vascular injury[J]. Am J Physiol Cell Physiol, 2013, 305 (6): C591-C600.
|
17 |
Yamaoka-Tojo M, Tojo T, Kim HW, et al. IQGAP1 mediates VE-cadherin-based cell-cell contacts and VEGF signaling at adherence junctions linked to angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2006, 26 (9): 1991-1997.
|
18 |
Tian Y, Tian X, Gawlak G, et al. Role of IQGAP1 in endothelial barrier enhancement caused by OxPAPC[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 311 (4): L800-L809.
|
19 |
Tanos BE, Perez Bay AE, Salvarezza S, et al. IQGAP1 controls tight junction formation through differential regulation of claudin recruitment[J]. J Cell Sci, 2015, 128 (5): 853-862.
|
20 |
Tanos BE, Yeaman C, Rodriguez-Boulan E. An emerging role for IQGAP1 in tight junction control[J]. Small GTPases, 2018, 9 (5): 375-383.
|
21 |
Sullivan DP, Dalal PJ, Jaulin F, et al. Endothelial IQGAP1 regulates leukocyte transmigration by directing the LBRC to the site of diapedesis[J]. J Exp Med, 2019, 216 (11): 2582-2601.
|