1 |
Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations[J]. Am J Respir Crit Care Med, 2016, 193 (3): 259-272.
|
2 |
李玉玲,康健,冯卓.脓毒症心功能障碍的研究进展[J/CD].中华危重症医学杂志(电子版),2017,10(3):200-206.
|
3 |
Choi JS, Trinh TX, Ha J, et al. Implementation of complementary model using optimal combination of hematological parameters for sepsis screening in patients with fever[J]. Sci Rep, 2020, 10 (1): 273.
|
4 |
Jalali S, Bhartiya D, Lalwani MK, et al. Systematic transcriptome wide analysis of lncRNA-miRNA interactions[J]. PLoS One, 2013, 8 (2): e53823.
|
5 |
Zhu L, Li N, Sun L, et al. Non-coding RNAs: the key detectors and regulators in cardiovascular disease[J]. Genomics, 2021, 113 (1 Pt 2): 1233-1246.
|
6 |
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function[J]. Nat Rev Genet, 2016, 17 (1): 47-62.
|
7 |
Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA[J]. Nat Rev Mol Cell Biol, 2018, 19 (3): 143-157.
|
8 |
Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing miRNA-lncRNA interactions[J]. Methods Mol Biol, 2016 (1402): 271-286.
|
9 |
Liu H, Wan J, Chu J. Long non-coding RNAs and endometrial cancer[J]. Biomed Pharmacother, 2019 (119): 109396.
|
10 |
Long J, Bai Y, Yang X, et al. Construction and comprehensive analysis of a ceRNA network to reveal potential prognostic biomarkers for hepatocellular carcinoma[J]. Cancer Cell Int, 2019 (19): 90.
|
11 |
Zhu W, Tian L, Yue X, et al. LncRNA expression profiling of ischemic stroke during the transition from the acute to subacute stage[J]. Front Neurol, 2019 (10): 36.
|
12 |
Chen K, Shi X, Jin Y, et al. High lncRNA MEG3 expression is associated with high mortality rates in patients with sepsis and increased lipopolysaccharide-induced renal epithelial cell and cardiomyocyte apoptosis[J]. Exp Ther Med, 2019, 18 (5): 3943-3947.
|
13 |
Zhu L, Liu X, Pu W, et al. tRNA-derived small non-coding RNAs in human disease[J]. Cancer Lett, 2018 (419): 1-7.
|
14 |
Ying SY, Chang DC, Lin SL. The microRNA[J]. Methods Mol Biol, 2018 (1733): 1-25.
|
15 |
Wojciechowska A, Braniewska A, Kozar-Kamińska K. MicroRNA in cardiovascular biology and disease[J]. Adv Clin Exp Med, 2017, 26 (5): 865-874.
|
16 |
Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease[J]. Circulation, 2010, 121 (8): 1022-1032.
|
17 |
Zeng XC, Li L, Wen H, et al. MicroRNA-128 inhibition attenuates myocardial ischemia/reperfusion injury-induced cardiomyocyte apoptosis by the targeted activation of peroxisome proliferator-activated receptor gamma[J]. Mol Med Rep, 2016, 14 (1): 129-136.
|
18 |
Dhir A, Dhir S, Proudfoot NJ, et al. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs[J]. Nat Struct Mol Biol, 2015, 22 (4): 319-327.
|
19 |
Tuersong T, Li L, Abulaiti Z, et al. Comprehensive analysis of the aberrantly expressed lncRNA-associated ceRNA network in breast cancer[J]. Mol Med Rep, 2019, 19 (6): 4697-4710.
|
20 |
Xiong Y, Wang L, Li Y, et al. The long non-coding RNA XIST interacted with miR-124 to modulate bladder cancer growth, invasion and migration by targeting androgen receptor (AR)[J]. Cell Physiol Biochem, 2017, 43 (1): 405-418.
|
21 |
Wang H, Shen Q, Zhang X, et al. The long non-coding RNA XIST controls non-small cell lung cancer proliferation and invasion by modulating miR-186-5p[J]. Cell Physiol Biochem, 2017, 41 (6): 2221-2229.
|
22 |
Gu S, Xie R, Liu X, et al. Long coding RNA XIST contributes to neuronal apoptosis through the downregulation of AKT phosphorylation and is negatively regulated by miR-494 in rat spinal cord injury[J]. Int J Mol Sci, 2017, 18 (4): 732.
|
23 |
Huang YS, Hsieh HY, Shih HM, et al. Urinary Xist is a potential biomarker for membranous nephropathy[J]. Biochem Biophys Res Commun, 2014, 452 (3): 415-421.
|
24 |
Xu G, Mo L, Wu C, et al. The miR-15a-5p-XIST-CUL3 regulatory axis is important for sepsis-induced acute kidney injury[J]. Ren Fail, 2019, 41 (1): 955-966.
|
25 |
Choi DC, Yoo M, Kabaria S, et al. MicroRNA-7 facilitates the degradation of alpha-synuclein and its aggregates by promoting autophagy[J]. Neurosci Lett, 2018 (678): 118-123.
|
26 |
McMillan KJ, Murray TK, Bengoa-Vergniory N, et al. Loss of microRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo[J]. Mol Ther, 2017, 25 (10): 2404-2414.
|
27 |
Kim T, Mehta SL, Morris-Blanco KC, et al. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein[J]. Sci Signal, 2018, 11 (560): eaat4285.
|
28 |
Hu F, Yang J, Chen X, et al. LncRNA 1700020I14Rik/miR-297a/CGRP axis suppresses myocardial cell apoptosis in myocardial ischemia-reperfusion injury[J]. Mol Immunol, 2020 (122): 54-61.
|
29 |
Li A, Peng R, Sun Y, et al. LincRNA 1700020I14Rik alleviates cell proliferation and fibrosis in diabetic nephropathy via miR-34a-5p/Sirt1/HIF-1alpha signaling[J]. Cell Death Dis, 2018, 9 (5): 461.
|
30 |
Wang J, Duan L, Guo T, et al. Downregulation of miR-30c promotes renal fibrosis by target CTGF in diabetic nephropathy[J]. J Diabetes Complications, 2016, 30 (3): 406-414.
|
31 |
Wu M, Liang G, Duan H, et al. Synergistic effects of sulfur dioxide and polycyclic aromatic hydrocarbons on pulmonary pro-fibrosis via mir-30c-1-3p/transforming growth factor beta type Ⅱ receptor axis[J]. Chemosphere, 2019 (219): 268-276.
|
32 |
Chen W, Yao G, Zhou K. miR-103a-2-5p/miR-30c-1-3p inhibits the progression of prostate cancer resistance to androgen ablation therapy via targeting androgen receptor variant 7[J]. J Cell Biochem, 2019, 120 (8): 14055-14064.
|
33 |
Ding J, Xia Y, Yu Z, et al. Identification of upstream miRNAs of SNAI2 and their influence on the metastasis of gastrointestinal stromal tumors[J]. Cancer Cell Int, 2019 (19): 289.
|
34 |
Li X, Feng S, Luo Y, et al. Expression profiles of microRNAs in oxidized low-density lipoprotein-stimulated RAW 264.7 cells[J]. In Vitro Cell Dev Biol Anim, 2018, 54 (2): 99-110.
|