切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2021, Vol. 14 ›› Issue (02) : 113 -119. doi: 10.3877/cma.j.issn.1674-6880.2021.02.004

所属专题: 文献

论著

非编码RNA在脓毒症心肌细胞中表达及分析
黄爱蓉1,(), 梁冬施1, 金益梅1, 林苗苗2, 夏小娇2, 陈晓丽2   
  1. 1. 325000 浙江温州,温州医科大学附属第二医院、育英儿童医院儿童普通内科
    2. 325000 浙江温州,温州医科大学附属第二医院、育英儿童医院中西医结合科
  • 收稿日期:2020-12-25 出版日期:2021-04-30
  • 通信作者: 黄爱蓉
  • 基金资助:
    浙江省医药卫生科技计划项目(2019311934); 温州市公益性科技计划项目(Y20180009)

Differential expression of non-coding RNA in septic cardiomyocytes

Airong Huang1,(), Dongshi Liang1, Yimei Jin1, Miaomiao Lin2, Xiaojiao Xia2, Xiaoli Chen2   

  1. 1. Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
    2. Department of Integrated Chinese and Western Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
  • Received:2020-12-25 Published:2021-04-30
  • Corresponding author: Airong Huang
引用本文:

黄爱蓉, 梁冬施, 金益梅, 林苗苗, 夏小娇, 陈晓丽. 非编码RNA在脓毒症心肌细胞中表达及分析[J]. 中华危重症医学杂志(电子版), 2021, 14(02): 113-119.

Airong Huang, Dongshi Liang, Yimei Jin, Miaomiao Lin, Xiaojiao Xia, Xiaoli Chen. Differential expression of non-coding RNA in septic cardiomyocytes[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2021, 14(02): 113-119.

目的

探讨长链非编码RNA(lncRNA)及微RNA(miRNA)在脓毒症心肌细胞中的表达情况。

方法

采用基因芯片筛选对照组与脓毒症组小鼠心肌细胞中lncRNA与miRNA的差异基因,通过基因本体和京都基因与基因组百科全书对差异基因进行分析以判定差异基因主要参与的生物学功能及相关通路。通过starbase数据库及NCBI数据库中的基因数据库进一步筛选与心肌细胞及线粒体损伤相关的差异lncRNA和miRNA。采用实时定量PCR方法验证上述lncRNA与miRNA基因在脓毒症心肌细胞中的表达情况。

结果

对照组与脓毒症组小鼠心肌细胞中有显著差异的lncRNA共5 520个,上调的lncRNA有3 186个,下调的lncRNA有2 334个;有显著差异的miRNA共有90个,其中上调的miRNA共59个,下调的miRNA共有31个。生物学功能筛选发现,lncRNA中的xist、1700020I14Rik及miRNA中的miR-7a-5p、miR-30c-1-3p与心肌细胞及线粒体损害密切相关。脓毒症组细胞中xist(t = 5.640,P = 0.002)与1700020I14Rik (t = 6.044,P = 0.002)表达水平较对照组均显著升高,miR-7a-5p(t = 27.277,P < 0.001)与miR-30c-1-3p(t = 12.910,P < 0.001)表达水平较对照组均显著下降。

结论

lncRNA及miRNA均参与了脓毒症心肌细胞损伤的过程,且差异基因xist、1700020I14Rik、miR-7a-5p、miR-30c-1-3p可能在其中起到关键作用。

Objective

To explore the differential expression levels of long non-coding RNA (lncRNA) and microRNA (miRNA) in septic cardiomyocytes.

Methods

The gene microarray was used to detect the differential lncRNA and miRNA in the cardiomyocytes of mice in the sepsis group and control group. The gene ontology and Kyoto Encyclopedia of Genes and Genomes were used to predict the major biological functions and signal pathways involved in the differentially expressed lncRNA and miRNA. Then the differential lncRNA and miRNA related to myocardial cell and mitochondrial injury were further screened through starbase and NCBI databases. The above related genes were verified and detected by real-time quantitative PCR.

Results

A total of 5 520 distinctly differentially expressed lncRNAs and 90 distinctly differentially expressed miRNAs were found in the sepsis group as compared with the control group, among which 3 186 lncRNAs and 59 miRNAs were up-regulated, and 2 334 lncRNAs and 31 miRNAs down-regulated. Biological function analysis showed that xist, 1700020I14Rik in lncRNA and miR-7a-5p, miR-30c-1-3p in miRNA were closely related to damage of cardiomyocytes and mitochondria. Compared with the control group, the expression levels of xist (t = 5.640, P = 0.002) and 1700020I14Rik (t = 6.044, P = 0.002) significantly increased, and the expression levels of miR-7a-5p (t = 27.277, P < 0.001) and miR-30c-1-3p (t = 12.910, P < 0.001) markedly decreased in the sepsis group.

Conclusion

Both lncRNA and miRNA are involved in the pathophysiological process of sepsis in cardiomyocytes, and the xist, 1700020I14Rik, miR-7a-5p and miR-30c-1-3p may play a key role in the sepsis-induced cardiac dysfunction.

表1 lncRNA与miRNA的引物序列
表2 两组心肌细胞RNA样本浓度和纯度( ± s
图1 lncRNA中显著富集的差异表达基因GO分析及pathway分析
图2 miRNA中显著富集的差异表达基因GO分析及pathway分析
图3 两组心肌细胞lncRNA及miRNA中显著富集的差异表达基因比较(n = 4.5 × 105
1
Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations[J]. Am J Respir Crit Care Med, 2016, 193 (3): 259-272.
2
李玉玲,康健,冯卓.脓毒症心功能障碍的研究进展[J/CD].中华危重症医学杂志(电子版),2017,10(3):200-206.
3
Choi JS, Trinh TX, Ha J, et al. Implementation of complementary model using optimal combination of hematological parameters for sepsis screening in patients with fever[J]. Sci Rep, 2020, 10 (1): 273.
4
Jalali S, Bhartiya D, Lalwani MK, et al. Systematic transcriptome wide analysis of lncRNA-miRNA interactions[J]. PLoS One, 2013, 8 (2): e53823.
5
Zhu L, Li N, Sun L, et al. Non-coding RNAs: the key detectors and regulators in cardiovascular disease[J]. Genomics, 2021, 113 (1 Pt 2): 1233-1246.
6
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function[J]. Nat Rev Genet, 2016, 17 (1): 47-62.
7
Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA[J]. Nat Rev Mol Cell Biol, 2018, 19 (3): 143-157.
8
Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing miRNA-lncRNA interactions[J]. Methods Mol Biol, 2016 (1402): 271-286.
9
Liu H, Wan J, Chu J. Long non-coding RNAs and endometrial cancer[J]. Biomed Pharmacother, 2019 (119): 109396.
10
Long J, Bai Y, Yang X, et al. Construction and comprehensive analysis of a ceRNA network to reveal potential prognostic biomarkers for hepatocellular carcinoma[J]. Cancer Cell Int, 2019 (19): 90.
11
Zhu W, Tian L, Yue X, et al. LncRNA expression profiling of ischemic stroke during the transition from the acute to subacute stage[J]. Front Neurol, 2019 (10): 36.
12
Chen K, Shi X, Jin Y, et al. High lncRNA MEG3 expression is associated with high mortality rates in patients with sepsis and increased lipopolysaccharide-induced renal epithelial cell and cardiomyocyte apoptosis[J]. Exp Ther Med, 2019, 18 (5): 3943-3947.
13
Zhu L, Liu X, Pu W, et al. tRNA-derived small non-coding RNAs in human disease[J]. Cancer Lett, 2018 (419): 1-7.
14
Ying SY, Chang DC, Lin SL. The microRNA[J]. Methods Mol Biol, 2018 (1733): 1-25.
15
Wojciechowska A, Braniewska A, Kozar-Kamińska K. MicroRNA in cardiovascular biology and disease[J]. Adv Clin Exp Med, 2017, 26 (5): 865-874.
16
Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease[J]. Circulation, 2010, 121 (8): 1022-1032.
17
Zeng XC, Li L, Wen H, et al. MicroRNA-128 inhibition attenuates myocardial ischemia/reperfusion injury-induced cardiomyocyte apoptosis by the targeted activation of peroxisome proliferator-activated receptor gamma[J]. Mol Med Rep, 2016, 14 (1): 129-136.
18
Dhir A, Dhir S, Proudfoot NJ, et al. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs[J]. Nat Struct Mol Biol, 2015, 22 (4): 319-327.
19
Tuersong T, Li L, Abulaiti Z, et al. Comprehensive analysis of the aberrantly expressed lncRNA-associated ceRNA network in breast cancer[J]. Mol Med Rep, 2019, 19 (6): 4697-4710.
20
Xiong Y, Wang L, Li Y, et al. The long non-coding RNA XIST interacted with miR-124 to modulate bladder cancer growth, invasion and migration by targeting androgen receptor (AR)[J]. Cell Physiol Biochem, 2017, 43 (1): 405-418.
21
Wang H, Shen Q, Zhang X, et al. The long non-coding RNA XIST controls non-small cell lung cancer proliferation and invasion by modulating miR-186-5p[J]. Cell Physiol Biochem, 2017, 41 (6): 2221-2229.
22
Gu S, Xie R, Liu X, et al. Long coding RNA XIST contributes to neuronal apoptosis through the downregulation of AKT phosphorylation and is negatively regulated by miR-494 in rat spinal cord injury[J]. Int J Mol Sci, 2017, 18 (4): 732.
23
Huang YS, Hsieh HY, Shih HM, et al. Urinary Xist is a potential biomarker for membranous nephropathy[J]. Biochem Biophys Res Commun, 2014, 452 (3): 415-421.
24
Xu G, Mo L, Wu C, et al. The miR-15a-5p-XIST-CUL3 regulatory axis is important for sepsis-induced acute kidney injury[J]. Ren Fail, 2019, 41 (1): 955-966.
25
Choi DC, Yoo M, Kabaria S, et al. MicroRNA-7 facilitates the degradation of alpha-synuclein and its aggregates by promoting autophagy[J]. Neurosci Lett, 2018 (678): 118-123.
26
McMillan KJ, Murray TK, Bengoa-Vergniory N, et al. Loss of microRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo[J]. Mol Ther, 2017, 25 (10): 2404-2414.
27
Kim T, Mehta SL, Morris-Blanco KC, et al. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein[J]. Sci Signal, 2018, 11 (560): eaat4285.
28
Hu F, Yang J, Chen X, et al. LncRNA 1700020I14Rik/miR-297a/CGRP axis suppresses myocardial cell apoptosis in myocardial ischemia-reperfusion injury[J]. Mol Immunol, 2020 (122): 54-61.
29
Li A, Peng R, Sun Y, et al. LincRNA 1700020I14Rik alleviates cell proliferation and fibrosis in diabetic nephropathy via miR-34a-5p/Sirt1/HIF-1alpha signaling[J]. Cell Death Dis, 2018, 9 (5): 461.
30
Wang J, Duan L, Guo T, et al. Downregulation of miR-30c promotes renal fibrosis by target CTGF in diabetic nephropathy[J]. J Diabetes Complications, 2016, 30 (3): 406-414.
31
Wu M, Liang G, Duan H, et al. Synergistic effects of sulfur dioxide and polycyclic aromatic hydrocarbons on pulmonary pro-fibrosis via mir-30c-1-3p/transforming growth factor beta type Ⅱ receptor axis[J]. Chemosphere, 2019 (219): 268-276.
32
Chen W, Yao G, Zhou K. miR-103a-2-5p/miR-30c-1-3p inhibits the progression of prostate cancer resistance to androgen ablation therapy via targeting androgen receptor variant 7[J]. J Cell Biochem, 2019, 120 (8): 14055-14064.
33
Ding J, Xia Y, Yu Z, et al. Identification of upstream miRNAs of SNAI2 and their influence on the metastasis of gastrointestinal stromal tumors[J]. Cancer Cell Int, 2019 (19): 289.
34
Li X, Feng S, Luo Y, et al. Expression profiles of microRNAs in oxidized low-density lipoprotein-stimulated RAW 264.7 cells[J]. In Vitro Cell Dev Biol Anim, 2018, 54 (2): 99-110.
[1] 刘丹妮, 敖梦, 冉海涛, 李世玉, 秦芳. 三维超声心动图及二维斑点追踪成像对持续性心房颤动复律后双心房逆向重构的评估[J]. 中华医学超声杂志(电子版), 2023, 20(08): 827-835.
[2] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[3] 吴赤球, 韦曙东, 张辉, 严许清, 梅朵卓嘎, 余丹. 驻不同海拔高度高原人员习服后心脏结构和功能变化的超声心动图评估[J]. 中华医学超声杂志(电子版), 2023, 20(06): 588-593.
[4] 谭芳, 杨娇娇, 沈玉琴, 李炎菲海, 王海蕊, 范思涵, 纪学芹. 胎儿心脏定量分析技术对正常胎儿心脏形态及收缩功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(06): 598-604.
[5] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[6] 吴群, 张鑫, 李培, 王芳韵, 郑淋, 卫海燕, 马宁. 孤立型主动脉缩窄的超声心动图诊断及术后随访研究[J]. 中华医学超声杂志(电子版), 2023, 20(06): 642-646.
[7] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[8] 王玲燕, 邹磊, 洪亮, 宋三兵, 付润, 熊胜男, 宋晓春. 心脏外科术后患者并发低三碘甲状腺原氨酸综合征的影响因素分析[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 399-402.
[9] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[10] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1021-1024.
[13] 张生怀. 急性心肌梗死致心源性猝死救治分析一例[J]. 中华临床医师杂志(电子版), 2023, 17(08): 924-926.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要