切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2019, Vol. 12 ›› Issue (06) : 361 -366. doi: 10.3877/cma.j.issn.1674-6880.2019.06.001

所属专题: 文献

论著

内皮抑素通过Notch1/血小板源生长因子信号通路对小鼠肺纤维化的抑制作用
谢晗1, 陈琼2, 王懿春2,()   
  1. 1. 421001 湖南衡阳,南华大学医学院
    2. 410013 长沙,湖南省肿瘤医院重症医学科
  • 收稿日期:2019-08-20 出版日期:2019-12-01
  • 通信作者: 王懿春
  • 基金资助:
    湖南省自然科学基金项目(2018JJ2245); 湖南省临床医疗技术创新引导计划项目(2017sk50607)

Inhibitory effect of endostatin on pulmonary fibrosis in mice through Notch1/platelet-derived growth factor signaling pathway

Han Xie1, Qiong Chen2, Yichun Wang2,()   

  1. 1. School of Medicine, University of South China, Hengyang 421001, China
    2. Department of Critical Care Medicine, Hunan Cancer Hospital, Changsha 410013, China
  • Received:2019-08-20 Published:2019-12-01
  • Corresponding author: Yichun Wang
  • About author:
    Corresponding author: Wang Yichun, Email:
引用本文:

谢晗, 陈琼, 王懿春. 内皮抑素通过Notch1/血小板源生长因子信号通路对小鼠肺纤维化的抑制作用[J]. 中华危重症医学杂志(电子版), 2019, 12(06): 361-366.

Han Xie, Qiong Chen, Yichun Wang. Inhibitory effect of endostatin on pulmonary fibrosis in mice through Notch1/platelet-derived growth factor signaling pathway[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2019, 12(06): 361-366.

目的

研究内皮抑素通过Notch1/血小板源生长因子(Notch1/PDGF)信号通路对小鼠肺纤维化的抑制作用。

方法

将30只小鼠分为对照组、模型组和内皮抑素组,每组各10只。模型组和内皮抑素组小鼠给予气管内注射博莱霉素(5 mg/kg)以建立肺纤维化模型,对照组小鼠仅注射等量等渗NaCl溶液;内皮抑素组小鼠每天腹腔注射内皮抑素(2.3 mg/kg),对照组和模型组小鼠每天腹腔注射等量等渗NaCl溶液,所有小鼠均持续注射21 d。21 d后处死所有小鼠,取左肺组织行病理学染色;取右肺组织,应用Western-blotting法检测Collagen I,Notch1/PDGF信号通路相关蛋白转化生长因子β1(TGF-β1)、Hes1、Hey1、PDGF-B、PDGF受体β(PDGFR-β)及周细胞相关蛋白Desmin、神经元-胶质细胞抗原2(NG2)及α-平滑肌肌动蛋白(α-SMA)的表达水平。

结果

光镜下,可见对照组小鼠肺泡结构完整,未见异常胶原蛋白;模型组小鼠肺泡结构被破坏,有大量胶原蛋白沉积;内皮抑素组小鼠可见肺组织结构相对完整,而胶原蛋白明显减少。3组小鼠间Collagen I、TGF-β1、Hes1、Hey1、PDGF-B、PDGFR-β、Desmin、NG2及α-SMA蛋白表达水平的比较,差异均有统计学意义(F = 12.068、30.603、29.757、35.451、16.059、16.420、24.512、19.084、28.102,P均<0.001)。进一步两两比较发现,内皮抑素组小鼠的Collagen I、TGF-β1、Hes1、Hey1、PDGF-B、PDGFR-β及α-SMA蛋白表达水平均显著低于模型组小鼠,Desmin及NG2蛋白表达水平均显著高于模型组小鼠(P均<0.05);而内皮抑素组与对照组小鼠间Collagen I、TGF-β1、Hes1、Hey1、PDGF-B、PDGFR-β、Desmin、NG2及α-SMA蛋白表达水平的比较,差异均无统计学意义(P均>0.05)。

结论

内皮抑素可通过Notch1/PDGF信号通路抑制周细胞向肌成纤维细胞转化,从而影响小鼠肺纤维化。

Objective

To investigate the inhibitory effect of endostatin on pulmonary fibrosis in mice via the Notch1/platelet-derived growth factor (PDGF) signaling pathway.

Methods

A total of 30 mice were randomly divided into a control group, a model group and an endostatin group, with 10 mice in each group. Mice in the model and endostatin groups were given bleomycin (5 mg/kg) by intratracheal injection to establish a model of pulmonary fibrosis, and mice in the control group were injected with equal volume of isotonic NaCl solution. Then, mice in the endostatin group were given endostatin (2.3 mg/kg) daily, and mice in the control and model groups were injected with equal volume of isotonic NaCl solution, all by intraperitoneal injection for 21 days; afterwards, all mice were sacrificed. The left lung tissue was taken for pathological staining, and the right lung tissue was used to detect expression levels of Collagen I, Notch1/PDGF signaling pathway-related proteins [transforming growth factor-beta 1 (TGF-β1), Hes1, Hey1, PDGF-B, PDGF receptor-beta (PDGFR-β)], and pericyte proteins [Desmin, neuron-glial antigen 2 (NG2), alpha-smooth muscle actin (α-SMA)] by Western-blotting.

Results

Under light microscope, the alveolar structure was intact and no abnormal collagen was found in the control group; the alveolar structure was destroyed and massive collagen was deposited in the model group; the alveolar structure was relatively intact and collagen significantly reduced in the endostatin group. The expression levels of Collagen I, TGF-β1, Hes1, Hey1, PDGF-B, PDGFR-β, Desmin, NG2 and α-SMA were significantly different among three groups (F = 12.068, 30.603, 29.757, 35.451, 16.059, 16.420, 24.512, 19.084, 28.102; all P < 0.001). Meanwhile, compared with the model group, the expression levels of Collagen I, TGF-β1, Hes1, Hey1, PDGF-B, PDGFR-β and α-SMA were much lower and the expression levels of Desmin and NG2 were much higher in the endostatin group (all P < 0.05). However, the expression levels of Collagen I, TGF-β1, Hes1, Hey1, PDGF-B, PDGFR-β, Desmin, NG2 and α-SMA showed no significant differences between the endostatin group and control group (all P>0.05).

Conclusion

Endostatin inhibits the transformation of pericytes into myofibroblasts by the Notch1/PDGF signaling pathway, and thereby restrains pulmonary fibrosis in mice.

图1 3组小鼠肺组织病理变化图
图2 3组小鼠胶原蛋白Collagen I的表达水平的比较(n= 10)
图3 3组小鼠Notch1/PDGF信号通路相关蛋白表达水平的比较(n= 10)
图4 3组小鼠周细胞相关蛋白表达水平的比较(n= 10)
1
Sun W, Tang H, Gao L, et al. Mechanisms of pulmonary fibrosis induced by core fucosylation in pericytes[J]. Int J Biochem Cell Biol, 2017 (88): 44-54.
2
Hung C, Linn G, Chow YH, et al. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2013, 188 (7): 820-830.
3
Wang Y, Liang Y, Luo J, et al. XIST/miR-139 axis regulates bleomycin (BLM)-induced extracellular matrix (ECM) and pulmonary fibrosis through β-catenin[J]. Oncotarget, 2017, 8 (39): 65359-65369.
4
Barron L, Gharib SA, Duffield JS. Lung pericytes and resident fibroblasts: busy multitaskers[J]. Am J Pathol, 2016, 186 (10): 2519-2531.
5
Andersson-Sjoland A, Karlsson JC, Rydell-Tormanen K. ROS-induced endothelial stress contributes to pulmonary fibrosis through pericytes and Wnt signaling[J]. Lab Invest, 2016, 96 (2): 206-217.
6
Yamaguchi Y, Takihara T, Chambers RA, et al. A peptide derived from endostatin ameliorates organ fibrosis[J]. Sci Transl Med, 2012, 4 (136): 136ra71.
7
Nishimoto T, Mlakar L, Takihara T, et al. An endo-statin-derived peptide orally exerts anti-fibrotic activity in a murine pulmonary fibrosis model[J]. Int Immunopharmacol, 2015, 28 (2): 1102-1105.
8
Hu B, Phan SH. Notch in fibrosis and as a target of anti-fibrotic therapy[J]. Pharmacol Res, 2016 (108): 57-64.
9
Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine[J]. Gene Dev, 2008, 22 (10): 1276-1312.
10
Wang YC, Dong J, Nie J, et al. Amelioration of bleomycin-induced pulmonary fibrosis by chlorogenic acid through endoplasmic reticulum stress inhibition[J]. Apoptosis, 2017, 22 (9): 1147-1156.
11
Zhang K, Yang S, Zhu Y, et al. Protection against acute radiation-induced lung injury: a novel role for the anti-angiogenic agent Endostar[J]. Mol Med Rep, 2012, 6 (2): 309-315.
12
King TE Jr, Pardo A, Selman M. Idiopathic pulmonary fibrosis[J]. Lancet, 2011, 378 (9807): 1949-1961.
13
Wang Y, Liu J, Chen J, et al. MiR-29 mediates TGFβ1-induced extracellular matrix synthesis through activation of Wnt/β-catenin pathway in human pulmonary fibroblasts[J]. Technol Health Care, 2015 (23 Suppl 1): S119-S125.
14
Wang YC, Liu JS, Tang HK, et al. miR-221 targets HMGA2 to inhibit bleomycin-induced pulmonary fibrosis by regulating TGF-β1/Smad3-induced EMT[J]. Int J Mol Med, 2016, 38 (4): 1208-1216.
15
Bochaton-Piallat ML, Gabbiani G, Hinz B. The myofibroblast in wound healing and fibrosis: answered and unanswered questions[J]. F1000Res, 2016 (5. pii): F1000 Faculty Rev-752.
16
Hardie WD, Glasser SW, Hagood JS. Emerging concepts in the pathogenesis of lung fibrosis[J]. Am J Pathol, 2009, 175 (1): 3-16.
17
O'Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth[J]. Cell, 1997, 88 (2): 277-285.
18
Lee JH, Isayeva T, Larson MR, et al. Endostatin: a novel inhibitor of androgen receptor function in prostate cancer[J]. Proc Natl Acad Sci USA, 2015, 112 (5): 1392-1397.
19
Peng Y, Gao M, Jiang Y, et al. Angiogenesis inhibitor endostatin protects mice with sepsis from multiple organ dysfunction syndrome[J]. Shock, 2015, 44 (4): 357-364.
20
Martensson J, Jonsson N, Glassford NJ, et al. Plasma endostatin may improve acute kidney injury risk prediction in critically ill patients[J]. Ann Intensive Care, 2016, 6 (1): 6.
21
Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development[J]. Science, 1999, 284 (5415): 770-776.
22
Zhang K, Zhang YQ, Ai WB, et al. Hes1, an important gene for activation of hepatic stellate cells, is regulated by Notch1 and TGF-β/BMP signaling[J]. World J Gastroenterol, 2015, 21 (3): 878-887.
23
Jin S, Hansson EM, Tikka S, et al. Notch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells[J]. Circ Res, 2008, 102 (12): 1483-1491.
24
Lin X, Kong LN, Huang C, et al. Hesperetin derivative-7 inhibits PDGF-BB-induced hepatic stellate cell activation and proliferation by targeting Wnt/β-catenin pathway[J]. Int Immunopharmacol, 2015, 25 (2): 311-320.
25
Tsao PN, Matsuoka C, Wei SC, et al. Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity[J]. Proc Natl Acad Sci USA, 2016, 113 (29): 8242-8247.
26
Tan EM, Qin H, Kennedy SH, et al. Platelet-derived growth factors-AA and -BB regulate collagen and collagenase gene expression differentially in human fibroblasts[J]. Biochem J, 1995, 310 (Pt2): 585-588.
27
Aono Y, Kishi M, Yokota Y, et al. Role of platelet-derived growth factor/platelet-derived growth factor receptor axis in the trafficking of circulating fibrocytes in pulmonary fibrosis[J]. Am J Respir Cell Mol Biol, 2014, 51 (6): 793-801.
28
Fang L, Zhan S, Huang C, et al. TRPM7 channel regulates PDGF-BB-induced proliferation of hepatic stellate cells via PI3K and ERK pathways[J]. Toxicol Appl Pharmacol, 2013, 272 (3): 713-725.
29
Richeldi L, Cottin V, du Bois RM, et al. Nintedanib in patients with idiopathic pulmonary fibrosis: combined evidence from the TOMORROW and INPULSIS(®) trials[J]. Respir Med, 2016 (113): 74-79.
30
Hung C, Linn G, Chow YH, et al. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2013, 188 (7): 820-830.
31
Rock JR, Barkauskas CE, Cronce MJ, et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition[J]. Proc Natl Acad Sci USA, 2011, 108 (52): E1475-E1483.
32
吴逢选,张京臣,姜久昆,等.转化生长因子β1/Smads通路在百草枯中毒所致上皮-间充质转变和肺纤维化中的作用研究[J/CD].中华危重症医学杂志(电子版),2018,11(1):3-10.
33
Bichsel CA, Hall SR, Schmid RA, et al. Primary human lung pericytes support and stabilize in vitro perfusable microvessels[J]. Tissue Eng Part A, 2015, 21 (15-16): 2166-2176.
34
Rowley JE, Johnson JR. Pericytes in chronic lung disease[J]. Int Arch Allergy Immunol, 2014, 164 (3): 178-188.
35
陈俊伊,王懿春.微小RNA-21和转化生长因子β1在急性呼吸窘迫综合征大鼠肺纤维化组织中的表达变化[J/CD].中华危重症医学杂志(电子版),2016,9(4):234-239.
[1] 周伟, 蔡恒, 范海迪, 李惠中, 王传霞, 顾茂胜. cblC型甲基丙二酸血症MMACHC基因新突变对小鼠神经细胞凋亡及Wnt/β-catenin信号通路的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 528-539.
[2] 刘甜甜, 李明, 朱含汀, 倪涛, 彭银波, 方勇. 创缘铁过载的临床样本验证与铁过载对小鼠创面愈合的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 475-481.
[3] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[4] 张星哲, 郑秉暄, 邓格, 豆猛, 石玉婷, 卫田, 郭映聪, 韩锋, 赵艳龙, 丁晨光, 田普训. 髓源性抑制细胞通过抑制炎症反应减轻小鼠肾脏缺血再灌注损伤[J]. 中华移植杂志(电子版), 2023, 17(01): 42-46.
[5] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[6] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[7] 李青原, 冯同, 邱雪琴, 李万成. 迷迭香提取物防治肺纤维化研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 908-911.
[8] 王赛妮, 徐旺, 李华娟, 唐英俊, 李卫霞, 李羲, 黄华萍. 影像表现为肺纤维化的肉芽肿性多血管炎一例报告并文献复习[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 603-605.
[9] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[10] 白静怡, 黄轩, 张益权, 田颖, 陶勇. 小鼠干眼模型构建及其角膜特征检测的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 12-17.
[11] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[12] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[13] 梁伟, 王晓彬, 洪笑阳, 蔡明岳, 梁礼聪, 陈烨, 黄培凯, 刘铭宇, 林立腾, 朱康顺. 原位肝癌小鼠微波消融术后复发模型的构建[J]. 中华介入放射学电子杂志, 2023, 11(02): 133-139.
[14] 吕昆明, 王沙沙, 万军, 令狐恩强. 胃食管反流病与特发性肺纤维化关系的研究进展[J]. 中华胃肠内镜电子杂志, 2023, 10(02): 121-124.
[15] 买买提·依斯热依力, 王永康, 阿巴伯克力·乌斯曼, 克力木·阿不都热依木. 基于16s rRNA测序分析小鼠高脂饮食诱导肥胖的肠道菌群结构特征[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 12-16.
阅读次数
全文


摘要