切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2019, Vol. 12 ›› Issue (06) : 361 -366. doi: 10.3877/cma.j.issn.1674-6880.2019.06.001

所属专题: 文献

论著

内皮抑素通过Notch1/血小板源生长因子信号通路对小鼠肺纤维化的抑制作用
谢晗1, 陈琼2, 王懿春2,()   
  1. 1. 421001 湖南衡阳,南华大学医学院
    2. 410013 长沙,湖南省肿瘤医院重症医学科
  • 收稿日期:2019-08-20 出版日期:2019-12-01
  • 通信作者: 王懿春
  • 基金资助:
    湖南省自然科学基金项目(2018JJ2245); 湖南省临床医疗技术创新引导计划项目(2017sk50607)

Inhibitory effect of endostatin on pulmonary fibrosis in mice through Notch1/platelet-derived growth factor signaling pathway

Han Xie1, Qiong Chen2, Yichun Wang2,()   

  1. 1. School of Medicine, University of South China, Hengyang 421001, China
    2. Department of Critical Care Medicine, Hunan Cancer Hospital, Changsha 410013, China
  • Received:2019-08-20 Published:2019-12-01
  • Corresponding author: Yichun Wang
  • About author:
    Corresponding author: Wang Yichun, Email:
引用本文:

谢晗, 陈琼, 王懿春. 内皮抑素通过Notch1/血小板源生长因子信号通路对小鼠肺纤维化的抑制作用[J/OL]. 中华危重症医学杂志(电子版), 2019, 12(06): 361-366.

Han Xie, Qiong Chen, Yichun Wang. Inhibitory effect of endostatin on pulmonary fibrosis in mice through Notch1/platelet-derived growth factor signaling pathway[J/OL]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2019, 12(06): 361-366.

目的

研究内皮抑素通过Notch1/血小板源生长因子(Notch1/PDGF)信号通路对小鼠肺纤维化的抑制作用。

方法

将30只小鼠分为对照组、模型组和内皮抑素组,每组各10只。模型组和内皮抑素组小鼠给予气管内注射博莱霉素(5 mg/kg)以建立肺纤维化模型,对照组小鼠仅注射等量等渗NaCl溶液;内皮抑素组小鼠每天腹腔注射内皮抑素(2.3 mg/kg),对照组和模型组小鼠每天腹腔注射等量等渗NaCl溶液,所有小鼠均持续注射21 d。21 d后处死所有小鼠,取左肺组织行病理学染色;取右肺组织,应用Western-blotting法检测Collagen I,Notch1/PDGF信号通路相关蛋白转化生长因子β1(TGF-β1)、Hes1、Hey1、PDGF-B、PDGF受体β(PDGFR-β)及周细胞相关蛋白Desmin、神经元-胶质细胞抗原2(NG2)及α-平滑肌肌动蛋白(α-SMA)的表达水平。

结果

光镜下,可见对照组小鼠肺泡结构完整,未见异常胶原蛋白;模型组小鼠肺泡结构被破坏,有大量胶原蛋白沉积;内皮抑素组小鼠可见肺组织结构相对完整,而胶原蛋白明显减少。3组小鼠间Collagen I、TGF-β1、Hes1、Hey1、PDGF-B、PDGFR-β、Desmin、NG2及α-SMA蛋白表达水平的比较,差异均有统计学意义(F = 12.068、30.603、29.757、35.451、16.059、16.420、24.512、19.084、28.102,P均<0.001)。进一步两两比较发现,内皮抑素组小鼠的Collagen I、TGF-β1、Hes1、Hey1、PDGF-B、PDGFR-β及α-SMA蛋白表达水平均显著低于模型组小鼠,Desmin及NG2蛋白表达水平均显著高于模型组小鼠(P均<0.05);而内皮抑素组与对照组小鼠间Collagen I、TGF-β1、Hes1、Hey1、PDGF-B、PDGFR-β、Desmin、NG2及α-SMA蛋白表达水平的比较,差异均无统计学意义(P均>0.05)。

结论

内皮抑素可通过Notch1/PDGF信号通路抑制周细胞向肌成纤维细胞转化,从而影响小鼠肺纤维化。

Objective

To investigate the inhibitory effect of endostatin on pulmonary fibrosis in mice via the Notch1/platelet-derived growth factor (PDGF) signaling pathway.

Methods

A total of 30 mice were randomly divided into a control group, a model group and an endostatin group, with 10 mice in each group. Mice in the model and endostatin groups were given bleomycin (5 mg/kg) by intratracheal injection to establish a model of pulmonary fibrosis, and mice in the control group were injected with equal volume of isotonic NaCl solution. Then, mice in the endostatin group were given endostatin (2.3 mg/kg) daily, and mice in the control and model groups were injected with equal volume of isotonic NaCl solution, all by intraperitoneal injection for 21 days; afterwards, all mice were sacrificed. The left lung tissue was taken for pathological staining, and the right lung tissue was used to detect expression levels of Collagen I, Notch1/PDGF signaling pathway-related proteins [transforming growth factor-beta 1 (TGF-β1), Hes1, Hey1, PDGF-B, PDGF receptor-beta (PDGFR-β)], and pericyte proteins [Desmin, neuron-glial antigen 2 (NG2), alpha-smooth muscle actin (α-SMA)] by Western-blotting.

Results

Under light microscope, the alveolar structure was intact and no abnormal collagen was found in the control group; the alveolar structure was destroyed and massive collagen was deposited in the model group; the alveolar structure was relatively intact and collagen significantly reduced in the endostatin group. The expression levels of Collagen I, TGF-β1, Hes1, Hey1, PDGF-B, PDGFR-β, Desmin, NG2 and α-SMA were significantly different among three groups (F = 12.068, 30.603, 29.757, 35.451, 16.059, 16.420, 24.512, 19.084, 28.102; all P < 0.001). Meanwhile, compared with the model group, the expression levels of Collagen I, TGF-β1, Hes1, Hey1, PDGF-B, PDGFR-β and α-SMA were much lower and the expression levels of Desmin and NG2 were much higher in the endostatin group (all P < 0.05). However, the expression levels of Collagen I, TGF-β1, Hes1, Hey1, PDGF-B, PDGFR-β, Desmin, NG2 and α-SMA showed no significant differences between the endostatin group and control group (all P>0.05).

Conclusion

Endostatin inhibits the transformation of pericytes into myofibroblasts by the Notch1/PDGF signaling pathway, and thereby restrains pulmonary fibrosis in mice.

图1 3组小鼠肺组织病理变化图
图2 3组小鼠胶原蛋白Collagen I的表达水平的比较(n= 10)
图3 3组小鼠Notch1/PDGF信号通路相关蛋白表达水平的比较(n= 10)
图4 3组小鼠周细胞相关蛋白表达水平的比较(n= 10)
1
Sun W, Tang H, Gao L, et al. Mechanisms of pulmonary fibrosis induced by core fucosylation in pericytes[J]. Int J Biochem Cell Biol, 2017 (88): 44-54.
2
Hung C, Linn G, Chow YH, et al. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2013, 188 (7): 820-830.
3
Wang Y, Liang Y, Luo J, et al. XIST/miR-139 axis regulates bleomycin (BLM)-induced extracellular matrix (ECM) and pulmonary fibrosis through β-catenin[J]. Oncotarget, 2017, 8 (39): 65359-65369.
4
Barron L, Gharib SA, Duffield JS. Lung pericytes and resident fibroblasts: busy multitaskers[J]. Am J Pathol, 2016, 186 (10): 2519-2531.
5
Andersson-Sjoland A, Karlsson JC, Rydell-Tormanen K. ROS-induced endothelial stress contributes to pulmonary fibrosis through pericytes and Wnt signaling[J]. Lab Invest, 2016, 96 (2): 206-217.
6
Yamaguchi Y, Takihara T, Chambers RA, et al. A peptide derived from endostatin ameliorates organ fibrosis[J]. Sci Transl Med, 2012, 4 (136): 136ra71.
7
Nishimoto T, Mlakar L, Takihara T, et al. An endo-statin-derived peptide orally exerts anti-fibrotic activity in a murine pulmonary fibrosis model[J]. Int Immunopharmacol, 2015, 28 (2): 1102-1105.
8
Hu B, Phan SH. Notch in fibrosis and as a target of anti-fibrotic therapy[J]. Pharmacol Res, 2016 (108): 57-64.
9
Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine[J]. Gene Dev, 2008, 22 (10): 1276-1312.
10
Wang YC, Dong J, Nie J, et al. Amelioration of bleomycin-induced pulmonary fibrosis by chlorogenic acid through endoplasmic reticulum stress inhibition[J]. Apoptosis, 2017, 22 (9): 1147-1156.
11
Zhang K, Yang S, Zhu Y, et al. Protection against acute radiation-induced lung injury: a novel role for the anti-angiogenic agent Endostar[J]. Mol Med Rep, 2012, 6 (2): 309-315.
12
King TE Jr, Pardo A, Selman M. Idiopathic pulmonary fibrosis[J]. Lancet, 2011, 378 (9807): 1949-1961.
13
Wang Y, Liu J, Chen J, et al. MiR-29 mediates TGFβ1-induced extracellular matrix synthesis through activation of Wnt/β-catenin pathway in human pulmonary fibroblasts[J]. Technol Health Care, 2015 (23 Suppl 1): S119-S125.
14
Wang YC, Liu JS, Tang HK, et al. miR-221 targets HMGA2 to inhibit bleomycin-induced pulmonary fibrosis by regulating TGF-β1/Smad3-induced EMT[J]. Int J Mol Med, 2016, 38 (4): 1208-1216.
15
Bochaton-Piallat ML, Gabbiani G, Hinz B. The myofibroblast in wound healing and fibrosis: answered and unanswered questions[J]. F1000Res, 2016 (5. pii): F1000 Faculty Rev-752.
16
Hardie WD, Glasser SW, Hagood JS. Emerging concepts in the pathogenesis of lung fibrosis[J]. Am J Pathol, 2009, 175 (1): 3-16.
17
O'Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth[J]. Cell, 1997, 88 (2): 277-285.
18
Lee JH, Isayeva T, Larson MR, et al. Endostatin: a novel inhibitor of androgen receptor function in prostate cancer[J]. Proc Natl Acad Sci USA, 2015, 112 (5): 1392-1397.
19
Peng Y, Gao M, Jiang Y, et al. Angiogenesis inhibitor endostatin protects mice with sepsis from multiple organ dysfunction syndrome[J]. Shock, 2015, 44 (4): 357-364.
20
Martensson J, Jonsson N, Glassford NJ, et al. Plasma endostatin may improve acute kidney injury risk prediction in critically ill patients[J]. Ann Intensive Care, 2016, 6 (1): 6.
21
Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development[J]. Science, 1999, 284 (5415): 770-776.
22
Zhang K, Zhang YQ, Ai WB, et al. Hes1, an important gene for activation of hepatic stellate cells, is regulated by Notch1 and TGF-β/BMP signaling[J]. World J Gastroenterol, 2015, 21 (3): 878-887.
23
Jin S, Hansson EM, Tikka S, et al. Notch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells[J]. Circ Res, 2008, 102 (12): 1483-1491.
24
Lin X, Kong LN, Huang C, et al. Hesperetin derivative-7 inhibits PDGF-BB-induced hepatic stellate cell activation and proliferation by targeting Wnt/β-catenin pathway[J]. Int Immunopharmacol, 2015, 25 (2): 311-320.
25
Tsao PN, Matsuoka C, Wei SC, et al. Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity[J]. Proc Natl Acad Sci USA, 2016, 113 (29): 8242-8247.
26
Tan EM, Qin H, Kennedy SH, et al. Platelet-derived growth factors-AA and -BB regulate collagen and collagenase gene expression differentially in human fibroblasts[J]. Biochem J, 1995, 310 (Pt2): 585-588.
27
Aono Y, Kishi M, Yokota Y, et al. Role of platelet-derived growth factor/platelet-derived growth factor receptor axis in the trafficking of circulating fibrocytes in pulmonary fibrosis[J]. Am J Respir Cell Mol Biol, 2014, 51 (6): 793-801.
28
Fang L, Zhan S, Huang C, et al. TRPM7 channel regulates PDGF-BB-induced proliferation of hepatic stellate cells via PI3K and ERK pathways[J]. Toxicol Appl Pharmacol, 2013, 272 (3): 713-725.
29
Richeldi L, Cottin V, du Bois RM, et al. Nintedanib in patients with idiopathic pulmonary fibrosis: combined evidence from the TOMORROW and INPULSIS(®) trials[J]. Respir Med, 2016 (113): 74-79.
30
Hung C, Linn G, Chow YH, et al. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2013, 188 (7): 820-830.
31
Rock JR, Barkauskas CE, Cronce MJ, et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition[J]. Proc Natl Acad Sci USA, 2011, 108 (52): E1475-E1483.
32
吴逢选,张京臣,姜久昆,等.转化生长因子β1/Smads通路在百草枯中毒所致上皮-间充质转变和肺纤维化中的作用研究[J/CD].中华危重症医学杂志(电子版),2018,11(1):3-10.
33
Bichsel CA, Hall SR, Schmid RA, et al. Primary human lung pericytes support and stabilize in vitro perfusable microvessels[J]. Tissue Eng Part A, 2015, 21 (15-16): 2166-2176.
34
Rowley JE, Johnson JR. Pericytes in chronic lung disease[J]. Int Arch Allergy Immunol, 2014, 164 (3): 178-188.
35
陈俊伊,王懿春.微小RNA-21和转化生长因子β1在急性呼吸窘迫综合征大鼠肺纤维化组织中的表达变化[J/CD].中华危重症医学杂志(电子版),2016,9(4):234-239.
[1] 李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.
[2] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[3] 张礼刚, 邹志辉, 许顺, 蔡可可, 胡永涛, 梁朝朝. 酒精对慢性非细菌性前列腺炎中T淋巴细胞变化的影响研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 74-81.
[4] 王亚岚, 倪婧, 余世庆, 陶银花, 张荣. 尼达尼布抗纤维化治疗特发性肺纤维化的耐受性和疗效预测因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 750-755.
[5] 周璇, 谢莉, 邹娟. 尼达尼布对特发性肺纤维化肺功能、肺纤维化程度及PDGF、PGE2、TGF-β1的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 368-372.
[6] 吴沛玲, 娄月妍, 张洪艳, 陈东方, 刘雪青, 赵丽芳, 薛姗, 蒋捍东. 线粒体相关基因在特发性肺纤维化中的分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 178-184.
[7] 邱凌霄, 王创业, 卿斌, 刘锦程, 张鑫烨, 武文娟, 邢德冰, 郭亮, 徐智, 王斌. 基于转录组学筛选特发性肺纤维化的枢纽基因和信号通路[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 212-217.
[8] 拉周措毛, 山春玲, 李国蓉, 华毛. 青海西宁地区IPF-LC的病理类型及临床特征分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 25-29.
[9] 范会业, 毛杨, 王文静, 李德峰. 大蒜素改善博莱霉素诱导小鼠肺纤维化的作用分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 9-13.
[10] 张晶晶, 刘锦, 张玉华. 高流量无创呼吸湿化治疗仪对肺纤维化并发感染及氧分压的影响[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(06): 883-885.
[11] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[12] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[13] 蒋心怡, 顾丹丹, 叶艳, 缪佳蓉. RNA测序研究抗菌肽KT2治疗溃疡性结肠炎的作用机制[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(01): 8-15.
[14] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J/OL]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[15] 王吉, 张颖, 顾雪, 杨朋磊, 陈齐红. 间充质干细胞微泡对ARDS肺纤维化影响的实验研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(01): 72-78.
阅读次数
全文


摘要