切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2024, Vol. 17 ›› Issue (02) : 97 -103. doi: 10.3877/cma.j.issn.1674-6880.2024.02.002

论著

干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究
李璐璐1, 马利红2, 金佳佳3, 谷伟1,()   
  1. 1. 210006 南京,南京医科大学附属南京医院(南京市第一医院)呼吸内科
    2. 214086 江苏无锡,无锡市第二人民医院呼吸与重症医学科
    3. 210002 南京,金陵医院呼吸与重症医学科
  • 收稿日期:2023-12-13 出版日期:2024-04-30
  • 通信作者: 谷伟
  • 基金资助:
    国家自然科学基金项目(82100095)

Stimulator of interferon genes affects acute lung injury repair in mice through pulmonary macrophage efferocytosis

Lulu Li1, Lihong Ma2, Jiajia Jin3, Wei Gu1,()   

  1. 1. Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
    2. Department of Respiratory and Critical Care Medicine, Wuxi Second People's Hospital, Wuxi 214086, China
    3. Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China
  • Received:2023-12-13 Published:2024-04-30
  • Corresponding author: Wei Gu
引用本文:

李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.

Lulu Li, Lihong Ma, Jiajia Jin, Wei Gu. Stimulator of interferon genes affects acute lung injury repair in mice through pulmonary macrophage efferocytosis[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2024, 17(02): 97-103.

目的

本研究旨在探讨干扰素基因刺激因子(STING)对小鼠急性肺损伤修复过程的作用,并深入研究其对小鼠巨噬细胞胞葬功能的影响。

方法

选取25只10 ~ 12周龄的C57BL/6小鼠,并随机分为D0组、D1组、D3组、D5组、D7组,每组5只,分别给予气管内注射0.5 mg/kg脂多糖(LPS)0、1、3、5、7 d后收集小鼠样本。另外,分别选择野生型STING+/+和STING基因缺失型(STING-/-)小鼠各5只,分为STING+/+ + LPS组和STING-/- + LPS组,同样给予气管内注射0.5 mg/kg LPS诱导5 d后收取小鼠样本。通过苏木素-伊红(HE)染色观察小鼠肺组织的损伤病理变化,并检测小鼠肺泡灌洗液细胞数、中性粒细胞数、蛋白浓度来评估肺损伤程度;经小鼠气管注射凋亡的中性粒细胞,并于3 h后收集肺泡灌洗液细胞进行流式细胞术检测,观察巨噬细胞的胞葬功能;采用免疫荧光染色法对肺组织进行TUNEL和F4/80双染评估胞葬作用;并采用巴氏染色法观察肺泡巨噬细胞的胞葬现象。

结果

C57BL/6小鼠诱导急性肺损伤后3 d达到肺损伤的顶峰,5 d后开始修复,并在不治疗的情况下,于7 d内修复基本完成。小鼠急性肺损伤5 d后,与STING+/+ + LPS组小鼠相比,STING-/- + LPS组小鼠的肺损伤评分、肺泡灌洗液总蛋白浓度、肺泡灌洗液总细胞数、肺泡灌洗液中性粒细胞数均较STING+/+ + LPS组更低(t = 3.257、2.926、3.946、2.669,P = 0.012、0.019、0.004、0.028)。流式细胞术及免疫荧光染色检测结果显示,STING-/- + LPS组小鼠肺泡巨噬细胞胞葬率均显著高于STING+/+ + LPS组(t = 3.143、6.963,P = 0.016、< 0.001)。

结论

STING缺失可能通过促进巨噬细胞胞葬功能,从而调控急性肺损伤的修复过程。本研究有望为深入理解STING在肺部损伤和修复中的作用提供新的见解。

Objective

To investigate the impact of the stimulator of interferon genes (STING) on the repair process of acute lung injury in mice and its influence on macrophages efferocytosis.

Methods

Twenty-five C57BL/6 mice aged 10-12 weeks were randomly divided into a D0 group, a D1 group, a D3 group, a D5 group and a D7 group, with five mice in each group, and the mice samples were collected after 0, 1, 3, 5 and 7 days of an intratracheal injection of 0.5 mg/kg lipopolysaccharide (LPS) respectively. In addition, five STING wild-type (STING+/+) mice and five STING knockout (STING-/-) mice were selected and divided into a STING+/+ + LPS group and a STING-/- + LPS group, and the mice samples were collected after 5 days of an intratracheal injection of 0.5 mg/kg LPS. Hematoxylin eosin (HE) staining was employed to observe the pathological changes in lung tissue, and the cell count, neutrophil count and protein concentration in alveolar lavage fluid were detected to access the degree of lung injury. Apoptotic neutrophils were injected into the trachea of mice, and alveolar lavage fluid cells were collected 3 hours later for flow cytometry to determine the efferocytosis rate of macrophages. TUNEL and F4/80 double staining of lung tissues were conducted via immunofluorescence to evaluate efferocytosis. The phenomenon of macrophage efferocytosis was observed through Pap staining.

Results

The C57BL/6 mice reached the peak of lung injury 3 days after induction of acute lung injury and began to repair after 5 days, and in the absence of treatment, the repair was basically completed within 7 days. After 5 days of acute lung injury, the lung tissue injury score and the protein concentration, total cell count and neutrophil count in alveolar lavage fluid of mice in the STING-/- + LPS group were lower than those in the STING+/+ + LPS group (t = 3.257, 2.926, 3.946, 2.669; P = 0.012, 0.019, 0.004, 0.028). Flow cytometry and immunofluorescence staining showed that the efferocytosis rates of alveolar macrophages in the STING-/- + LPS group were significantly higher than those in the STING+/+ + LPS group (t = 3.143, 6.963; P = 0.016, < 0.001).

Conclusions

Deletion of STING may regulate the repair process of acute lung injury through enhancing macrophage efferocytosis. Therefore, this study provides new insights into the role of STING in the lung injury and repair.

图1 各组小鼠肺损伤后的病理变化(HE染色 × 200)注:HE.苏木素-伊红;LPS.脂多糖;a ~ e图分别为D0组、D1组、D3组、D5组和D7组小鼠肺损伤病理结果;D0组、D1组、D3组、D5组和D7组分别为LPS诱导0、1、3、5、7 d;a图显示D0组小鼠肺泡结构正常;b图显示D1组小鼠肺泡壁增厚,较多炎症细胞浸润;c图显示D3组小鼠肺泡壁明显增厚,形态结构破坏,大量炎症细胞浸润;d图显示D5组小鼠肺泡壁稍破坏,少量炎症细胞浸润;e图显示D7组小鼠肺组织结构趋于正常
图2 两组小鼠肺部炎症的变化(n = 5)注:STING.干扰素基因刺激因子;LPS.脂多糖;HE.苏木素-伊红;BALF.肺泡灌洗液;a、b图分别为STING+/+ + LPS组和STING-/- + LPS组小鼠肺组织病理变化(HE染色 × 200);a图显示STING+/+ + LPS组小鼠肺泡结构明显受损,肺泡壁明显增厚,较多炎症细胞浸润;b图显示STING-/- + LPS组小鼠肺泡结构受损程度较轻,肺泡壁一般增厚,可见少量炎症细胞浸润;c图为两组小鼠肺损伤评分比较;d图为两组小鼠BALF总蛋白浓度比较;e图为两组小鼠BALF总细胞数比较;f图为两组小鼠BALF中性粒细胞数比较;与STING+/+ + LPS组比较,aP < 0.05
图3 STING+/+ + LPS组和STING-/- + LPS组小鼠肺泡灌洗液细胞病理结果(巴氏染色 × 400)注:STING.干扰素基因刺激因子;LPS.脂多糖;a图显示STING+/+ + LPS组小鼠有较少的肺泡巨噬细胞吞噬中性粒细胞现象(红色箭头指示);b图显示STING-/- + LPS组小鼠肺泡巨噬细胞吞噬中性粒细胞现象明显增多(红色箭头指示)
图4 流式细胞术检测两组小鼠肺泡巨噬细胞胞葬率(n = 5)注:STING.干扰素基因刺激因子;LPS.脂多糖;a、b图分别为STING+/+ + LPS组和STING-/- + LPS组小鼠流式细胞检测图;c图为两组小鼠肺泡巨噬细胞胞葬率比较;与STING+/+ + LPS组比较,aP < 0.05
图5 两组小鼠肺组织巨噬细胞胞葬情况(n = 5)注:STING.干扰素基因刺激因子;LPS.脂多糖;a、b图分别为STING+/+ + LPS组和STING-/- + LPS组小鼠肺组织免疫荧光染色结果[F4/80标记巨噬细胞(红色荧光),TUNEL标记凋亡的中性粒细胞(绿色荧光),× 400];a图显示STING+/+ + LPS组小鼠F4/80与TUNEL双染细胞较少(白色箭头指示);b图显示STING-/- + LPS组F4/80与TUNEL双染细胞明显增多(白色箭头指示);c图为两组小鼠肺组织巨噬细胞胞葬率比较;与STING+/+ + LPS组比较,aP < 0.05
1
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315 (8): 788-800.
2
Slutsky AS, Ranieri VM. Ventilator-induced lung injury[J]. N Engl J Med, 2013, 369 (22): 2126-2136.
3
Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016[J]. Crit Care Med, 2017, 45 (3): 486-552.
4
岳伟岗,向飞,张莹,等.急性呼吸窘迫综合征患者早期应用气道压力释放通气的疗效[J/CD].中华危重症医学杂志(电子版)202013(2):93-99.
5
杨茂宪,赵文静,王丽燕,等.驱动压对肺内源性急性呼吸窘迫综合征的影响[J/CD].中华危重症医学杂志(电子版)201811(4):238-243.
6
Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome[J]. N Engl J Med, 2017, 377 (6): 562-572.
7
González-López A, Albaiceta GM. Repair after acute lung injury: molecular mechanisms and therapeutic opportunities[J]. Crit Care, 2012, 16 (2): 209.
8
Elliott MR, Koster KM, Murphy PS. Efferocytosis signaling in the regulation of macrophage inflammatory responses[J]. J Immunol, 2017, 198 (4): 1387-1394.
9
Boada-Romero E, Martinez J, Heckmann BL, et al. The clearance of dead cells by efferocytosis[J]. Nat Rev Mol Cell Biol, 2020, 21 (7): 398-414.
10
McCubbrey AL, Curtis JL. Efferocytosis and lung disease[J]. Chest, 2013, 143 (6): 1750-1757.
11
Piperno GM, Naseem A, Silvestrelli G, et al. Wiskott-Aldrich syndrome protein restricts cGAS/STING activation by dsDNA immune complexes[J]. JCI insight, 2020, 5 (17): e132857.
12
Piersma SJ, Poursine-Laurent J, Yang L, et al. Virus infection is controlled by hematopoietic and stromal cell sensing of murine cytomegalovirus through STING[J]. ELife, 2020 (9): e56882.
13
Ning L, Wei W, Wenyang J, et al. Cytosolic DNA-STING-NLRP3 axis is involved in murine acute lung injury induced by lipopolysaccharide[J]. Clin Transl Med, 2020, 10 (7): e228.
14
Liu Q, Wu J, Zhang X, et al. Circulating mitochondrial DNA-triggered autophagy dysfunction via STING underlies sepsis-related acute lung injury[J]. Cell Death Dis, 2021, 12 (7): 673.
15
Jin J, Qian H, Wan B, et al. Geranylgeranyl diphosphate synthase deficiency hyperactivates macrophages and aggravates lipopolysaccharide-induced acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 320 (6): L1011-L1024.
16
Kulkarni HS, Lee JS, Bastarache JA, et al. Update on the features and measurements of experimental acute lung injury in animals: an official American Thoracic Society workshop report[J]. Am J Respir Cell Mol Biol, 2022, 66 (2): e1-e14.
17
Cai X, Chiu YH, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling[J]. Mol Cell, 2014, 54 (2): 289-296.
18
Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling[J]. Nature, 2008, 455 (7213): 674-678.
19
White MJ, McArthur K, Metcalf D, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production[J]. Cell, 2014, 159 (7): 1549-1562.
20
Rongvaux A, Jackson R, Harman CCD, et al. Apptotic caspases prevent the induction of type I interferons by mitochondrial DNA[J]. Cell, 2014, 159 (7): 1563-1577.
21
Zhao E, Chen J, Qiu D, et al. STING-deficiency in lung resident mesenchymal stromal cells contributes to the alleviation of LPS-induced lung injury[J]. Biochem Biophys Res Commun, 2024 (714): 149973.
22
Zhao J, Zhen N, Zhou Q, et al. NETs promote inflammatory injury by activating cGAS-STING pathway in acute lung injury[J]. Int J Mol Sci, 2023, 24 (6): 5125.
23
Wu YT, Xu WT, Zheng L, et al. 4-octyl itaconate ameliorates alveolar macrophage pyroptosis against ARDS via rescuing mitochondrial dysfunction and suppressing the cGAS/STING pathway[J]. Int Immunopharmacol, 2023 (118): 110104.
24
Kimura H, Suzuki M, Konno S, et al. Orchestrating role of apoptosis inhibitor of macrophage in the resolution of acute lung injury[J]. J Immunol, 2017, 199 (11): 3870-3882.
25
Jiang C, Liu Z, Hu R, et al. Inactivation of Rab11a GTPase in macrophages facilitates phagocytosis of apoptotic neutrophils[J]. J Immunol, 2017, 198 (4): 1660-1672.
26
Zhou Y, Fei M, Zhang G, et al. Blockade of the phagocytic receptor MerTK on tumor-associated macrophages enhances P2X7R-dependent STING activation by tumor-derived cGAMP[J]. Immunity, 2020, 52 (2): 357-373.e9.
27
Hu H, Cheng X, Li F, et al. Defective efferocytosis by aged macrophages promotes STING signaling mediated inflammatory liver injury[J]. Cell Death Discov, 2023, 9 (1): 236.
28
Huang R, Shi Q, Zhang S, et al. Inhibition of the cGAS-STING pathway attenuates lung ischemia/reperfusion injury via regulating endoplasmic reticulum stress in alveolar epithelial type Ⅱ cells of rats[J]. J Inflamm Res, 2022 (15): 5103-5119.
29
Wu B, Xu MM, Fan C, et al. STING inhibitor ameliorates LPS-induced ALI by preventing vascular endothelial cells-mediated immune cells chemotaxis and adhesion[J]. Acta Pharmacol Sin, 2022, 43 (8): 2055-2066.
[1] 薛嘉怡, 王丽, 艾涛. 巨噬细胞在儿童肺炎支原体肺炎中作用机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 643-648.
[2] 狄静怿, 陈禹江, 陈欣欣, 陈文霞. 基质细胞衍生因子1通过PI3K/AKT1信号通路对巨噬细胞极化的影响[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 89-95.
[3] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[4] 张礼刚, 邹志辉, 许顺, 蔡可可, 胡永涛, 梁朝朝. 酒精对慢性非细菌性前列腺炎中T淋巴细胞变化的影响研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 74-81.
[5] 顾晓凌, 吴冠楠, 宋勇. 核因子E2相关因子2(Nrf2)与铁死亡在脓毒症相关急性肺损伤中的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 324-328.
[6] 李玉娟, 艾芳, 熊欢庆, 陈键, 刘刚, 李志超, 金发光. "丹蛇"组方对小鼠急性肺损伤的治疗作用[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 171-177.
[7] 方晓铵, 熊欢庆, 李玉娟, 刘刚, 金发光. E3泛素连接酶COP-1在脂多糖致小鼠急性肺损伤中的意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 14-18.
[8] 尚明煦, 魏丽娟, 是若春. 血清CRP、BNP、PCT与脓毒症并发ALI程度的相关性[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 766-769.
[9] 张敏龙, 金发光. MiR-138-5p通过抑制SIRT1表达增强了海水吸入性肺损伤中炎症反应[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 751-755.
[10] 赵世鸿, 陈键, 高嘉营, 金发光. 铁死亡在海水诱导支气管上皮细胞损伤中的作用研究[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 756-760.
[11] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
[12] 陈含冰, 储翠林, 邱海波. 急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 79-84.
[13] 蒋心怡, 顾丹丹, 叶艳, 缪佳蓉. RNA测序研究抗菌肽KT2治疗溃疡性结肠炎的作用机制[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 8-15.
[14] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[15] 李仔祥, 王苏贵, 张先云, 卢建文, 嵇宏声, 姜福金. 肿瘤相关性巨噬细胞通过TNF-α/B7H3调节人膀胱癌细胞增殖的研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 64-71.
阅读次数
全文


摘要