切换至 "中华医学电子期刊资源库"

中华危重症医学杂志(电子版) ›› 2016, Vol. 09 ›› Issue (01) : 9 -13. doi: 10.3877/cma.j.issn.1674-6880.2016.01.002

所属专题: 文献

论著

俯卧位通气对肺内源性急性肺损伤大鼠的影响
杨茂宪1, 施云超1, 朱建刚1, 沈鹏1, 王海波1, 宋先斌1, 许鹏程2, 赵文静2,()   
  1. 1. 314001 浙江嘉兴,浙江省嘉兴市第一医院ICU
    2. 221002 江苏徐州,徐州医学院江苏省麻醉学重点实验室;221002 江苏徐州,徐州医学院附属医院ICU
  • 收稿日期:2015-06-16 出版日期:2016-02-01
  • 通信作者: 赵文静
  • 基金资助:
    江苏省六大人才高峰基金资助计划(2009059); 嘉兴市医学重点学科重症医学基金资助项目(04-Z-08); 嘉兴市医学重点学科(支撑学科)资助项目(04-Z-08)

Effects of prone ventilation in rats with pulmonary acute lung injury

Maoxian Yang1, Yunchao Shi1, Jiangang Zhu1, Peng Shen1, Haibo Wang1, Xianbin Song1, Pengcheng Xu2, Wenjing Zhao2,()   

  1. 1. Department of Intensive Care Unit, the First Hospital of Jiaxing, Jiaxing 314001, China
    2. Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221002, China; Department of Intensive Care Unit, the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
  • Received:2015-06-16 Published:2016-02-01
  • Corresponding author: Wenjing Zhao
  • About author:
    Corresponding author: Zhao Wenjing, Email:
引用本文:

杨茂宪, 施云超, 朱建刚, 沈鹏, 王海波, 宋先斌, 许鹏程, 赵文静. 俯卧位通气对肺内源性急性肺损伤大鼠的影响[J]. 中华危重症医学杂志(电子版), 2016, 09(01): 9-13.

Maoxian Yang, Yunchao Shi, Jiangang Zhu, Peng Shen, Haibo Wang, Xianbin Song, Pengcheng Xu, Wenjing Zhao. Effects of prone ventilation in rats with pulmonary acute lung injury[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2016, 09(01): 9-13.

目的

探讨俯卧位通气对脂多糖(LPS)诱导的肺内源性急性肺损伤(ALI)大鼠的治疗作用及其机制。

方法

32只雄性SD大鼠随机分为对照组、ALI组、ALI仰卧位通气组(ALIS组)及ALI俯卧位通气组(ALIP组),每组各8只。通过气管内滴注LPS 6 mg/kg建立ALI动物模型,24 h后ALIS组及ALIP组分别实施仰卧位或俯卧位通气4 h。之后观察动脉血氧分压(PaO2)、二氧化碳分压(PaCO2)、肺组织湿/干重比(W/D);比较血清中肿瘤坏死因子α(TNF-α)、白细胞介素6(IL-6)水平;光镜下观察肺组织病理形态学变化。

结果

与对照组比较,ALI组、ALIS组和ALIP组PaO2明显降低(F = 57.369,P < 0.001),ALI组、ALIS组PaCO2均明显升高(F = 8.448,P < 0.001),ALI组、ALIS组和ALIP组肺W/D及血清中TNF-α、IL-6均明显升高(F = 13.609、6.443、23.849,P = 0.001、0.017、< 0.001);与ALI组比较,ALIS组和ALIP组PaO2明显升高,PaCO2、肺W/D比值、血清中TNF-α、IL-6均明显降低(P均< 0.05)。与ALIS组相比,ALIP组PaO2升高[(83 ± 6)mmHg vs.(71 ± 5)mmHg,P < 0.05],PaCO2降低[(50 ± 7)mmHg vs.(58 ± 6)mmHg,P < 0.05],肺组织W/D比值降低[(4.65 ± 0.56)vs.(4.82 ± 0.41),P < 0.05]及TNF-α、IL-6在血清中的水平均降低[(293 ± 68)ng/L vs.(366 ± 44)ng/L;(358 ± 39)ng/L vs.(440 ± 38)ng/L,P均< 0.05]。同时肺组织病理形态学显示,与ALIS组相比,ALIP组腹侧过度膨胀区域减少(F = 63.423,P < 0.001),正常通气区域增加(F = 73.229,P < 0.001);ALIP组背侧塌陷区域减少(F = 68.586,P < 0.001),正常通气区域及过度膨胀区域增加(F = 61.871,P < 0.001;F = 9.800,P = 0.001)。

结论

俯卧位通气能促进LPS诱导的肺内源性ALI大鼠的气体交换,减轻肺水肿,降低炎症反应。

Objective

To investigate the effects of prone ventilation in rats with lipopolysaccharide (LPS) induced pulmonary acute lung injury (ALI).

Methods

Totally 32 male Sprague-Dawley rats were randomly divided into four groups, 8 rats in each group: control group, pulmonary ALI group, supine position group (ALIS) and prone position group (ALIP). Rats in the ALI, ALIS, and ALIP groups were given 6 mg/kg LPS intratracheally to build the ALI rat model. After 24 h, rats in the ALIS and ALIP groups were were mechanically ventilated for 4 h in supine or prone positions. After that, PaO2 and PaCO2 of arterial blood, lung tissue wet/dry weight ratio (W/D), tumour necrosis factor-alpha (TNF-α) and interleukin-6(IL-6) concentrations in serum were compared in these four groups, and lung tissue morphometric analysis was inverstigated under light microscope at the same time.

Results

Compared with the control group, PaO2 were significantly lower in the ALI, ALIS and ALIP groups (F = 57.369, P < 0.001); PaCO2 in the ALI and ALIS groups were obviously higher (F = 8.448, P < 0.001); lung tissue W/D ratio, as well as the levels of TNF-α and IL-6 in serum were significantly higher in the ALI, ALIS and ALIP groups (F = 13.609, 6.443, 23.849; P = 0.001, 0.017, < 0.001). Compared with the ALI group, PaO2 in the ALIS and ALIP groups was significantly higher, but lung tissue W/D ratio, TNF-α and IL-6 in serum were obviously lower in these two groups (all P< 0.05). Compared with the ALIS group, except PaO2 was higher [(83 ± 6) mmHg vs. (71 ± 5) mmHg], PaCO2 [(50 ± 7) mmHg vs. (58 ± 6) mmHg, P < 0.05], lung tissue W/D ratio [(4.65 ± 0.56) vs. (4.82 ± 0.41), P < 0.05, TNF-α and IL-6 in serum [(293 ± 68) ng/L vs. (366 ± 44) ng/L; (358 ± 39) ng/L vs. (440 ± 38) ng/L; all P < 0.05] were obviously lower in the ALIP group. Meanwhile under light microscope, compared with the ALIS group, hyper-inflated areas were less (F = 63.423, P < 0.001), normal areas were larger (F = 73.229, P < 0.001) on the ventral side in the ALIP group. Also, normal and hyper-inflated area were greater (F = 61.871, P < 0.001; F = 9.800; P = 0.001) when the collapsed area was less (F = 68.586, P < 0.001) on the dorsal side in the ALIP group.

Conclusion

In LPS-induced pulmonary ALI rats model, the prone ventilation improved gas exchange, decreased pulmonary edema with attenuate inflammatory responses.

表1 俯卧位通气对ALI大鼠PaO2、PaCO2、肺W/D比值及血清中TNF-α、IL-6含量的影响(±s
表2 俯卧位通气对ALI大鼠腹侧及背侧区域肺组织病理形态学的影响(±s
[1]
ARDS Definition Task Force,Ranieri VM,Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition[J]. JAMA, 2012, 307 (23): 2526-2533.
[2]
Girard TD,Bernard GR. Mechanical ventilation in ARDS: a state-of-the-art review[J]. Chest, 131 (3): 921-929.
[3]
Taccone P,Pesenti A,Latini R, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome[J]. JAMA, 2009, 302 (18): 1977-1984.
[4]
Hu SL,He HL,Pan C, et al. The effect of prone positioning on mortality in patients with acute respiratory distress syndrome: a meta-analysis of randomized controlled trials[J]. Crit Care, 2014, 18 (3): 206-214.
[5]
Guérin C,Reignier J,Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome[J]. N Engl J Med, 2013, 368 (23): 2159-2168.
[6]
Chiumello D,Taccone P,Berto V, et al. Long-term outcomes in survivors of acute respiratory distress syndrome ventilated in supine or prone position[J]. Intensive Care Med, 2012, 38 (2): 221-229.
[7]
Alsaghir AH,Martin CM. Effect of prone positioning in patients with acute respiratory distress syndrome: a meta-analysis[J]. Crit Care Med, 2008, 36 (2): 603-609.
[8]
Riva DR,Oliveira MB,Rzezinski AF, et al. Recruitment maneuver in pulmonary and extrapulmonary experimental acute lung injury[J]. Crit Care Med, 2008, 36 (6): 1900-1908.
[9]
Steimback PW,Oliveira GP,Rzezinski AF, et al. Effects of frequency andinspiratory plateau pressure during recruitment manoeuvres on lung and distal organs in acute lung injury[J]. Intensive Care Med, 2009, 35 (6): 1120-1128.
[10]
Pelosi P,D'Onofrio D,Chiumello D, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different[J]. Eur Respir J Suppl, 2003, 42: 48s-56s.
[11]
Russell JA. Prone positioning in patients with acute respiratory distress syndrome[J]. JAMA, 2010, 303 (9): 832-833.
[12]
Protti A,Chiumello D,Cressoni M, et al. Relationship between gas exchange response to prone position and lung recruitability during acute respiratory failure[J]. Intensive Care Med, 2009, 35 (6): 1011-1017.
[13]
Gritti P,Lanterna LA,Re M, et al. The use of inhaled nitric oxide and prone position in an ARDS patient with severe traumatic brain injury during spine stabilization[J]. J Anesth, 2013, 27 (2): 293-297.
[14]
Spragg RG,Taut FJH,Lewis JF, et al. Recombinant surfactant protein C-based surfactant for patients with severe direct lung injury[J]. Am J Respir Crit Care Med, 2011, 83 (8): 1055-1061.
[15]
Aboab J,Niklason L,Uttman L, et al. Dead space and CO2 elimination related to pattern of inspiratory gas delivery in ARDS patients[J]. Crit Care, 2012, 16 (2): R39.
[16]
Mac Sweeney R,Fischer H,McAuley DF. Nasal potential difference to detect Na+ channel dysfunction in acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2011, 300 (3): L305-L318.
[17]
Murray JF. Pulmonary edema: pathophysiology and diagnosis[J]. Int J Tuberc Lung Dis, 2011, 15 (2): 155-160.
[18]
Richter T,Bellani G,Harris RS, et al. Effect of prone position on regional shunt, aeration, and perfusion in experimental acute lung injury[J]. Am J Respir Crit Care Med, 2005, 172 (4): 480-487.
[19]
Mertens M,Tabuchi A,Meissner S, et al. Alveolar dynamics in acute lung injury: Heterogeneous distension rather than cyclic opening and collapse[J]. Crit Care Med, 2009, 37 (9): 2604-2611.
[20]
Kuiper JW,Plotz FB,Groeneveld ABJ, et al. High tidal volume mechanical ventilation-induced lung injury in rats is greater after acid instillation than after sepsis-induced acute lung injury, but does not increase systemic inflammation: an experimental study[J]. BMC Anesthesiol, 2011, 11: 26.
[1] 梁哲浩, 方明笋, 胡弘毅, 陶涛, 徐孝平, 孙华琴. 基于生物信息学分析筛选脓毒症诱导急性肺损伤的关键基因[J]. 中华危重症医学杂志(电子版), 2022, 15(05): 360-366.
[2] 童洪杰, 陈琨, 潘飞艳, 倪红英. 俯卧位通气对静脉-静脉体外膜肺氧合支持的急性呼吸窘迫综合征患者病死率影响的Meta分析[J]. 中华危重症医学杂志(电子版), 2022, 15(04): 312-317.
[3] 沈纵, 魏晨如, 朱邦晖, 包郁露, 伍国胜, 孙瑜. 间充质干细胞治疗吸入性损伤的动物实验研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 180-183.
[4] 蔡维霞, 曹涛, 赵明, 肖丹, 贾艳慧, 王璟, 张月, 王克甲, 韩军涛, 胡大海. Notch信号通路对烧伤大鼠血清诱导的肺血管内皮细胞细胞间黏附分子-1的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 292-299.
[5] 周强, 赵烨德, 王雨翔, 肖仕初. 烧伤合并烟雾吸入性肺损伤病理机制和治疗研究新进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(02): 171-175.
[6] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[7] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[8] 董红雪, 沈玥, 鲁静, 帅维正, 高苗莉, 陶莎. 俯卧位机械通气在慢性阻塞性肺疾病急性加重期的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 263-265.
[9] 李埝, 赵建军, 张建勇, 赵睿桢. hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 156-163.
[10] 陶莎, 鲁静, 沈玥, 帅维正, 王振华. 俯卧位无创机械通气治疗AECOPD的临床分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 792-795.
[11] 朱冠能, 汪洋, 宋海苗, 汪骏东. 血清铁蛋白及C反应蛋白水平对胸部创伤后急性肺损伤的预测意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 379-381.
[12] 王晶晶, 谢晖, 王瑞兰. 电阻抗断层成像监测俯卧位通气的发展现状[J]. 中华重症医学电子杂志, 2023, 09(01): 35-39.
[13] 尹承芬, 徐磊. 再议俯卧位通气的时机[J]. 中华重症医学电子杂志, 2023, 09(01): 9-13.
[14] 吴晓燕, 杨志祥, 於江泉, 郑瑞强. 扬州地区老年COVID-19患者临床特征分析及俯卧位通气疗效评价[J]. 中华重症医学电子杂志, 2022, 08(03): 216-222.
[15] 陈梦婷, 孟潇潇, 王瑞兰. 急性肺损伤时肺部微环境介导的细胞代谢变化的研究进展[J]. 中华重症医学电子杂志, 2022, 08(01): 80-84.
阅读次数
全文


摘要