1 |
Lewer D, Brothers TD, Gasparrini A, et al. Seasonal, weekly and other cyclical patterns in deaths due to drug poisoning in England and Wales[J]. Addiction, 2023, 118 (8): 1596-1601.
|
2 |
Gummin DD, Mowry JB, Beuhler MC, et al. 2023 annual report of the national poison data systemR (NPDS) from America's poison centersR: 41st annual report[J]. Clin Toxicol (Phila), 2024, 62 (12): 793-1027.
|
3 |
高艳霞,孙同文. 中国急性中毒十年研究回顾与展望[J]. 中华急诊医学杂志,2023,32(3):282-287.
|
4 |
Deng X, Jin Y, Wang Y, et al. Characteristics of poisoning cases admitted to outpatient and emergency department - China, 2019[J]. China CDC Wkly, 2023, 5 (47): 1052-1057.
|
5 |
Reisinger AC, Schneider N, Schreiber N, et al. Critical care management of acute intoxications, dynamics and changes over time: a cohort study[J]. Intern Emerg Med, 2024, 19 (7): 2015-2024.
|
6 |
Shi Q, Zhang J. Clinical prediction models for intensive care unit admission in patients with acute poisoning: is it time for a comprehensive evaluation of their utility?[J]. Toxicol Res (Camb), 2024, 13 (2): tfae031.
|
7 |
Peres IT, Hamacher S, Oliveira FLC, et al. What factors predict length of stay in the intensive care unit? Systematic review and meta-analysis[J]. J Crit Care, 2020, 60: 183-194.
|
8 |
Peres IT, Hamacher S, Cyrino Oliveira FL, et al. Data-driven methodology to predict the ICU length of stay: a multicentre study of 99,492 admissions in 109 Brazilian units[J]. Anaesth Crit Care Pain Med, 2022, 41 (6): 101142.
|
9 |
Shi Q, Dai H, Ba G, et al. Development and internal validation of a predictive model for prolonged intensive care unit stays in patients with psychotropic drug poisoning[J]. Heart Lung, 2024, 68: 350-358.
|
10 |
戴辉水,石齐芳,巴根,等. 急性药物中毒性脑病患者ICU住院时间预测模型的构建[J]. 中国工业医学杂志,2024,37(2):133-137.
|
11 |
Johnson AEW, Bulgarelli L, Shen L, et al. MIMIC-IV, a freely accessible electronic health record dataset[J]. Sci Data, 2023, 10 (1): 1.
|
12 |
Pollard TJ, Johnson AEW, Raffa JD, et al. The eICU Collaborative Research Database, a freely available multi-center database for critical care research[J]. Sci Data, 2018, 5: 180178.
|
13 |
Da B, Chen H, Wu W, et al. Development and validation of a machine learning-based model to predict survival in patients with cirrhosis after transjugular intrahepatic portosystemic shunt[J]. EClinicalMedicine, 2024, 79: 103001.
|
14 |
Shao L, Wang Z, Xie X, et al. Development and external validation of a machine learning-based fall prediction model for nursing home residents: a prospective cohort study[J]. J Am Med Dir Assoc, 2024, 25 (9): 105169.
|
15 |
Nattino G, Pennell ML, Lemeshow S. Assessing the goodness of fit of logistic regression models in large samples: a modification of the Hosmer-Lemeshow test[J]. Biometrics, 2020, 76 (2): 549-560.
|
16 |
Yang W, Jiang J, Schnellinger EM, et al. Modified Brier score for evaluating prediction accuracy for binary outcomes[J]. Stat Methods Med Res, 2022, 31 (12): 2287-2296.
|
17 |
庄燕,戴林峰,张海东,等. 脓毒症患者早期生存影响因素及Cox风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版),2024,17(5):372-378.
|
18 |
Zwaag SM, van den Hengel-Koot IS, Baker S, et al. The INTOXICATE study: methodology and preliminary results of a prospective observational study[J]. Crit Care, 2024, 28 (1): 316.
|
19 |
Hurtado D, Quintero JA, Rodriguez YA, et al. Principal causes of acute poisoning in an emergency service: experience between 2014 and 2021 at a University Hospital in Southwestern Colombia[J]. Sci Rep, 2024, 14 (1): 3544.
|
20 |
Naim G, Lacoste-Palasset T, M'Rad A, et al. Factors associated with prolonged intensive care stay among self-poisoned patients[J]. Clin Toxicol (Phila), 2022, 60(9): 997-1005.
|
21 |
Megahed FM, Chen YJ, Megahed A, et al. The class imbalance problem[J]. Nat Methods, 2021, 18 (11): 1270-1272.
|
22 |
Liisanantti JH, Ohtonen P, Kiviniemi O, et al. Risk factors for prolonged intensive care unit stay and hospital mortality in acute drug-poisoned patients: an evaluation of the physiologic and laboratory parameters on admission[J]. J Crit Care, 2011, 26 (2): 160-165.
|
23 |
Ichikura K, Okumura Y, Takeuchi T. Associations of adverse clinical course and ingested substances among patients with deliberate drug poisoning: a cohort study from an intensive care unit in Japan[J]. PLoS One, 2016, 11 (8): e0161996.
|
24 |
Song YX, Yang XD, Luo YG, et al. Comparison of logistic regression and machine learning methods for predicting postoperative delirium in elderly patients: a retrospective study[J]. CNS Neurosci Ther, 2023, 29 (1): 158-167.
|
25 |
Song X, Liu X, Liu F, et al. Comparison of machine learning and logistic regression models in predicting acute kidney injury: a systematic review and meta-analysis[J]. Int J Med Inform, 2021, 151: 104484.
|
26 |
石齐芳,张劲松. 急性中毒临床预测模型需要关注的几个问题[J]. 中华急诊医学杂志,2024,33(11):1479-1481.
|