1 |
Stotts C, Corrales-Medina VF, Rayner KJ. Pneumonia-induced inflammation, resolution and cardiovascular disease: causes, consequences and clinical opportunities[J]. Circ Res, 2023, 132 (6): 751-774.
|
2 |
Savin IA, Zenkova MA, Sen'kova AV. Pulmonary fibrosis as a result of acute lung inflammation: molecular mechanisms, relevant in vivo models, prognostic and therapeutic approaches[J]. Int J Mol Sci, 2022, 23 (23): 14959.
|
3 |
Malainou C, Abdin SM, Lachmann N, et al. Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting[J]. J Clin Invest, 2023, 133 (19): e170501.
|
4 |
Chen M, Deng H, Zhao Y, et al. Toll-like receptor 2 modulates pulmonary inflammation and TNF-α release mediated by mycoplasma pneumoniae[J]. Front Cell Infect Microbiol, 2022, 12: 824027.
|
5 |
Zhu Y, Han Q, Wang L, et al. Jinhua Qinggan granules attenuates acute lung injury by promotion of neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway[J]. J Ethnopharmacol, 2023, 301: 115763.
|
6 |
Wang P, Yin B, Zhang Z, et al. Foamy macrophages potentially inhibit tuberculous wound healing by inhibiting the TLRs/NF-κB signalling pathway[J]. Wound Repair Regen, 2022, 30 (3): 376-396.
|
7 |
林婷,曹心怡,金晓锋. E3泛素连接酶接头蛋白SPOP介导的底物非降解型泛素化修饰[J]. 中国生物化学与分子生物学报,2021,37(7):874-882.
|
8 |
Yang X, Zhu Q. SPOP in cancer: phenomena, mechanisms and its role in therapeutic implications[J]. Genes (Basel), 2022, 13 (11): 2051.
|
9 |
Hu YH, Wang Y, Wang F, et al. SPOP negatively regulates Toll-like receptor-induced inflammation by disrupting MyD88 self-association[J]. Cell Mol Immunol, 2021, 18 (7): 1708-1717.
|
10 |
杨茂宪,沈鹏,王倩倩,等. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J/OL]. 中华危重症医学杂志(电子版),2024,17(3):196-203.
|
11 |
李璐璐,马利红,金佳佳,等. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J/OL]. 中华危重症医学杂志(电子版),2024,17(2):97-103.
|
12 |
Hu J, Ye Y, Chen X, et al. Insight into the pathogenic mechanism of mycoplasma pneumoniae[J]. Curr Microbiol, 2022, 80 (1): 14.
|
13 |
Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity[J]. Front Immunol, 2022, 13: 812774.
|
14 |
张雅迪,杜方兵,唐思慧,等. TLRs/NF-κB信号通路及T淋巴细胞与重症肺炎患者预后的关系[J]. 国际呼吸杂志,2023,43(1):75-80.
|
15 |
Lu J, Gu B, Han X, et al. Mammary epithelial cell-derived exosomal miR-155-inhibitor played a key role in the treatment of mastitis via down-regulation of TLRs/NF-κB signaling pathway to inhibit inflammatory response[J]. Cell Mol Biol (Noisy-le-grand), 2023, 69 (15): 160-166.
|
16 |
Lian J, Zhu X, Du J, et al. Extracellular vesicle-transmitted miR-671-5p alleviates lung inflammation and injury by regulating the AAK1/NF-κB axis[J]. Mol Ther, 2023, 31 (5): 1365-1382.
|
17 |
Tao W, Su K, Huang Y, et al. Zuojinwan ameliorates CUMS-induced depressive-like behavior through inducing ubiquitination of MyD88 via SPOP/MyD88/ NF-κB pathway[J]. J Ethnopharmacol, 2023, 312: 116487.
|
18 |
Chen Y, Sun B. PTPRO activates TLR4/NF-κB signaling to intensify lipopolysaccharide-induced pneumonia cell injury[J]. Allergol Immunopathol (Madr), 2022, 50 (3): 119-124.
|
19 |
Zhang J, Yang X, Yang Y, et al. NF-κB mediates silica-induced pulmonary inflammation by promoting the release of IL-1β in macrophages[J]. Environ Toxicol, 2022, 37 (9): 2235-2243.
|
20 |
Gou X, Xu W, Liu Y, et al. IL-6 prevents lung macrophage death and lung inflammation injury by inhibiting GSDME- and GSDMD-mediated pyroptosis during pneumococcal pneumosepsis[J]. Microbiol Spectr, 2022, 10 (2): e0204921.
|
21 |
Chen D, Kang H, Tuo T, et al. Astragalus polysaccharide alleviated the inhibition of CSFV C-strain replication caused by PRRSV via the TLRs/NF-κB/TNF-α pathways[J]. Virus Res, 2022, 319: 198854.
|