| 5 |
Kumari M, Lu RM, Li MC, et al. A critical overview of current progress for COVID-19: development of vaccines, antiviral drugs, and therapeutic antibodies[J]. J Biomed Sci, 2022, 29 (1): 68.
|
| 6 |
许欢,孙加奎,章文豪,等.适龄人群感染新型冠状病毒Delta变异株后心肌损伤发病率及疫苗保护作用的研究[J/CD].中华危重症医学杂志(电子版),2022,15(2):98-103.
|
| 7 |
Jung J, Kim JY, Park H, et al. Transmission and infectious SARS-CoV-2 shedding kinetics in vaccinated and unvaccinated individuals[J]. JAMA Netw Open, 2022, 5 (5): e2213606.
|
| 8 |
Wiersinga WJ, Rhodes A, Cheng AC, et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review[J]. JAMA, 2020, 324 (8): 782-793.
|
| 9 |
Cromer D, Juno JA, Khoury D, et al. Prospects for durable immune control of SARS-CoV-2 and prevention of reinfection[J]. Nat Rev Immunol, 2021, 21 (6): 395-404.
|
| 10 |
Khoury DS, Cromer D, Reynaldi A, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection[J]. Nat Med, 2021, 27 (7): 1205-1211.
|
| 11 |
Earle KA, Ambrosino DM, Fiore-Gartland A, et al. Evidence for antibody as a protective correlate for COVID-19 vaccines[J]. Vaccine, 2021, 39 (32): 4423-4428.
|
| 12 |
Nelson RW, Chen Y, Venezia OL, et al. SARS-CoV-2 epitope-specific CD4+ memory T cell responses across COVID-19 disease severity and antibody durability[J]. Sci Immunol, 2022, 7 (73): eabl9464.
|
| 13 |
Greczmiel U, Oxenius A. The Janus face of follicular T helper cells in chronic viral infections[J]. Front Immunol, 2018 (9): 1162.
|
| 14 |
Wang Y, Tian Q, Ye L. The differentiation and maintenance of SARS-CoV-2-specific follicular helper T cells[J]. Front Cell Infect Microbiol, 2022 (12): 953022.
|
| 15 |
Vella LA, Herati RS, Wherry EJ. CD4+ T cell differentiation in chronic viral infections: the Tfh perspective[J]. Trends Mol Med, 2017, 23 (12): 1072-1087.
|
| 16 |
Cui D, Tang Y, Jiang Q, et al. Follicular helper T cells in the immunopathogenesis of SARS-CoV-2 infection[J]. Front Immuno, 2021 (12): 731100.
|
| 17 |
Zander R, Kasmani MY, Chen Y, et al. Tfh-cell-derived interleukin 21 sustains effector CD8+ T cell responses during chronic viral infection[J]. Immunity, 2022, 55 (3): 475-493.e5.
|
| 18 |
Ueno H, Banchereau J, Vinuesa CG. Pathophysiology of T follicular helper cells in humans and mice[J]. Nat Immunol, 2015, 16 (2): 142-152.
|
| 19 |
Chen Z, Wang N, Yao Y, et al. Context-dependent regulation of follicular helper T cell survival[J]. Trends Immunol, 2022, 43 (4): 309-321.
|
| 20 |
Jacobsen JT, Hu W, R Castro TB, et al. Expression of Foxp3 by T follicular helper cells in end-stage germinal centers[J]. Science, 2021, 373 (6552): eabe5146.
|
| 21 |
Deng J, Wei Y, Fonseca VR, et al. T follicular helper cells and T follicular regulatory cells in rheumatic diseases[J]. Nat Rev Rheumatol, 2019, 15 (8): 475-490.
|
| 22 |
Walker LSK. The link between circulating follicular helper T cells and autoimmunity[J]. Nat Rev Immunol, 2022, 22 (9): 567-575.
|
| 23 |
Ding T, Su R, Wu R, et al. Frontiers of autoantibodies in autoimmune disorders: crosstalk between Tfh/Tfr and regulatory B cells[J]. Front Immunol, 2021 (12): 641013.
|
| 24 |
Crotty S. T follicular helper cell biology: a decade of discovery and diseases[J]. Immunity, 2019, 50 (5): 1132-1148.
|
| 25 |
Olatunde AC, Hale JS, Lamb TJ. Cytokine-skewed Tfh cells: functional consequences for B cell help[J]. Trends Immunol, 2021, 42 (6): 536-550.
|
| 26 |
Houser CL, Lawrence BP. The aryl hydrocarbon receptor modulates T follicular helper cell responses to influenza virus infection in mice[J]. J Immunol, 2022, 208 (10): 2319-2330.
|
| 27 |
Thevarajan I, Nguyen THO, Koutsakos M, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19[J]. Nat Med, 2020, 26 (4): 453-455.
|
| 28 |
Schultheiβ C, Paschold L, Simnica D, et al. Next-generation sequencing of T and B cell receptor repertoires from COVID-19 patients showed signatures associated with severity of disease[J]. Immunity, 2020, 53 (2): 442-455.e4.
|
| 29 |
Juno JA, Tan HX, Lee WS, et al. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19[J]. Nat Med, 2020, 26 (9): 1428-1434.
|
| 30 |
Gong F, Dai Y, Zheng T, et al. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals[J]. J Clin Invest, 2020, 130 (12): 6588-6599.
|
| 31 |
Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity[J]. Cell, 2020, 183 (4): 996-1012.e19.
|
| 32 |
Zhao B, Zhong M, Yang Q, et al. Alterations in phenotypes and responses of T cells within 6 months of recovery from COVID-19: a cohort study[J]. Virol Sin, 2021, 36 (5): 859-868.
|
| 33 |
Kaneko N, Kuo HH, Boucau J, et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19[J]. Cell, 2020, 183 (1): 143-157.e13.
|
| 34 |
Neidleman J, Luo X, Frouard J, et al. SARS-CoV-2-specific T cells exhibit phenotypic features of helper function, lack of terminal differentiation, and high proliferation potential[J]. Cell Rep Med, 2020, 1 (6): 100081.
|
| 35 |
Meckiff BJ, Ramírez-Suástegui C, Fajardo V, et al. Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4+ T cells in COVID-19[J]. Cell, 2020, 183 (5): 1340-1353.e16.
|
| 36 |
Yan L, Cai B, Li Y, et al. Dynamics of NK, CD8 and Tfh cell mediated the production of cytokines and antiviral antibodies in Chinese patients with moderate COVID-19[J]. J Cell Mol Med, 2020, 24 (24): 14270-14279.
|
| 37 |
Collora JA, Liu R, Albrecht K, et al. The single-cell landscape of immunological responses of CD4+ T cells in HIV versus severe acute respiratory syndrome coronavirus 2[J]. Curr Opin HIV AIDS, 2021, 16 (1): 36-47.
|
| 1 |
Cai J, Deng X, Yang J, et al. Modeling transmission of SARS-CoV-2 Omicron in China[J]. Nat Med, 2022, 28 (7): 1468-1475.
|
| 2 |
Chen Z, Azman AS, Chen X, et al. Global landscape of SARS-CoV-2 genomic surveillance and data sharing[J]. Nat Genet, 2022, 54 (4): 499-507.
|
| 3 |
World Health Organization. Coronavirus (COVID-19) dashboard[EB/OL]. [2022-10-15].
URL
|
| 4 |
冯海婷,张晟,王芳,等.新型冠状病毒肺炎医院感染预防与控制管理经验[J/CD].中华危重症医学杂志(电子版),2020,13(1):1-4.
|
| 38 |
Adamo S, Chevrier S, Cervia C, et al. Profound dysregulation of T cell homeostasisand function in patients with severe COVID-19[J]. Allergy, 2021, 76 (9): 2866-2881.
|
| 39 |
Gao L, Zhou J, Yang S, et al. The dichotomous and incomplete adaptive immunity in COVID-19 patients with different disease severity[J]. Signal Transduct Target Ther, 2021, 6 (1): 113.
|
| 40 |
Koutsakos M, Rowntree LC, Hensen L, et al. Integrated immune dynamics define correlates of COVID-19 severity and antibody responses[J]. Cell Rep Med, 2021, 2 (3): 100208.
|
| 41 |
Zenarruzabeitia O, Astarloa-Pando G, Terrén I, et al. T cell activation, highly armed cytotoxic cells and a shift in monocytes CD300 receptors expression is characteristic of patients with severe COVID-19[J]. Front Immunol, 2021 (12): 655934.
|
| 42 |
Mathew D, Giles JR, Baxter AE, et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications[J]. Science, 2020, 369 (6508): eabc8511.
|
| 43 |
Fenoglio D, Dentone C, Parodi A, et al. Characterization of T lymphocytes in severe COVID-19 patients[J]. J Med Virol, 2021, 93 (9): 5608-5613.
|
| 44 |
Spoerl S, Kremer AN, Aigner M, et al. Upregulation of CCR4 in activated CD8+ T cells indicates enhanced lung homing in patients with severe acute SARS-CoV-2 infection[J]. Eur J Immunol, 2021, 51 (6): 1436-1448.
|
| 45 |
Shaan Lakshmanappa Y, Elizaldi SR, Roh JW, et al. SARS-CoV-2 induces robust germinal center CD4 T follicular helper cell responses in rhesus macaques[J]. Nat Commun, 2021, 12 (1): 541.
|
| 46 |
Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans[J]. Nat Rev Immunol, 2021, 21 (8): 475-484.
|
| 47 |
Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial[J]. Lancet Infect Dis, 2021, 21 (1): 39-51.
|
| 48 |
Zhang Y, Zeng G, Pan H, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial[J]. Lancet Infect Dis, 2021, 21 (2): 181-192.
|
| 49 |
Wu Z, Hu Y, Xu M, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial[J]. Lancet Infect Dis, 2021, 21 (6): 803-812.
|
| 50 |
Ella R, Reddy S, Jogdand H, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial[J]. Lancet Infect Dis, 2021, 21 (7): 950-961.
|
| 51 |
Corbett KS, Flynn B, Foulds KE, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates[J]. N Engl J Med, 2020, 383 (16): 1544-1555.
|
| 52 |
Lederer K, Castano D, Gómez Atria D, et al. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation[J]. Immunity, 2020, 53 (6): 1281-1295.e5.
|
| 53 |
Tauzin A, Nayrac M, Benlarbi M, et al. A single dose of the SARS-CoV-2 vaccine BNT162b2 elicits Fc-mediated antibody effector functions and T cell responses[J]. Cell Host Microbe, 2021, 29 (7): 1137-1150.e6.
|
| 54 |
Goel RR, Painter MM, Apostolidis SA, et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern[J]. Science, 2021, 374 (6572): abm0829.
|
| 55 |
Goel RR, Painter MM, Lundgreen KA, et al. Efficient recall of Omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine[J]. Cell, 2022, 185 (11): 187-1887.e8.
|
| 56 |
Tian JH, Patel N, Haupt R, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice[J]. Nat Commun, 2021, 12 (1): 372.
|
| 57 |
Tan HX, Juno JA, Lee WS, et al. Immunogenicity of prime-boost protein subunit vaccine strategies against SARS-CoV-2 in mice and macaques[J]. Nat Commun, 2021, 12 (1): 1403.
|
| 58 |
Wu Y, Huang X, Yuan L, et al. A recombinant spike protein subunit vaccine confers protective immunity against SARS-CoV-2 infection and transmission in hamsters[J]. Sci Transl Med, 2021, 13 (606): eabg1143.
|