1 |
Szatmary P, Grammatikopoulos T, Cai W, et al. Acute pancreatitis: diagnosis and treatment[J]. Drugs, 2022, 82 (12): 1251-1276.
|
2 |
Boxhoorn L, Voermans RP, Bouwense SA, et al. Acute pancreatitis[J]. Lancet, 2020, 396 (10252): 726-734.
|
3 |
黄平,傅小云,付豹. 重症急性胰腺炎患者125例临床特征和预后分析[J/OL]. 中华危重症医学杂志(电子版),2023,16(5):403-406.
|
4 |
杨晶,高青. 重症急性胰腺炎继发脓毒症的危险因素分析[J/OL]. 中华危重症医学杂志(电子版),2023,16(2):105-110.
|
5 |
Lee PJ, Papachristou GI. New insights into acute pancreatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16 (8): 479-496.
|
6 |
Mayerle J, Sendler M, Hegyi E, et al. Genetics, cell biology, and pathophysiology of pancreatitis[J]. Gastroenterology, 2019, 156 (7): 1951-1968.e1.
|
7 |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149 (5): 1060-1072.
|
8 |
Kerins MJ, Ooi A. The roles of NRF2 in modulating cellular iron homeostasis[J]. Antioxid Redox Signal, 2018, 29 (17): 1756-1773.
|
9 |
Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis[J]. Physiol Rev, 2018, 98 (3): 1169-1203.
|
10 |
Jaffry U, Wells G. Small molecule and peptide inhibitors of βTrCP and the βTrCP-NRF2 protein-protein interaction[J]. Biochem Soc Trans, 2023, 51 (3): 925-936.
|
11 |
Chowdhry S, Zhang Y, McMahon M, et al. Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity[J]. Oncogene, 2013, 32 (32): 3765-3781.
|
12 |
Chen QM, Maltagliati AJ. Nrf2 at the heart of oxidative stress and cardiac protection[J]. Physiol Genomics, 2018, 50 (2): 77-97.
|
13 |
Kong L, Deng J, Zhou X, et al. Sitagliptin activates the p62-Keap1-Nrf2 signalling pathway to alleviate oxidative stress and excessive autophagy in severe acute pancreatitis-related acute lung injury[J]. Cell Death Dis, 2021, 12 (10): 928.
|
14 |
Tu W, Wang H, Li S, et al. The anti-inflammatory and anti-oxidant mechanisms of the Keap1 / Nrf2 / ARE signaling pathway in chronic diseases[J]. Aging Dis, 2019, 10 (3): 637-651.
|
15 |
Hayes JD, Ashford ML. Nrf2 orchestrates fuel partitioning for cell proliferation[J]. Cell Metab, 2012, 16 (2): 139-141.
|
16 |
Sendler M, Weiss FU, Golchert J, et al. Cathepsin B-mediated activation of trypsinogen in endocytosing macrophages increases severity of pancreatitis in mice[J]. Gastroenterology, 2018, 154 (3): 704-718.e10.
|
17 |
Yang J, Tang X, Ke X, et al. Triptolide suppresses NF-κB-mediated inflammatory responses and activates expression of Nrf2-mediated antioxidant genes to alleviate caerulein-induced acute pancreatitis[J]. Int J Mol Sci, 2022, 23 (3): 1252.
|
18 |
Seyhun E, Malo A, Schafer C, et al. Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, acinar cell damage, and systemic inflammation in acute pancreatitis[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 301 (5): G773-G782.
|
19 |
Xu X, Zhang L, Ye X, et al. Nrf2 / ARE pathway inhibits ROS-induced NLRP3 inflammasome activation in BV2 cells after cerebral ischemia reperfusion[J]. Inflamm Res, 2018, 67 (1): 57-65.
|
20 |
Gong J, Xiong Z, Yu W, et al. Bone marrow mesenchymal stem cells alleviate acute severe pancreatitis and promote lung repair via inhibiting NLRP3 inflammasome in rat[J]. Dig Dis Sci, 2024, 69 (1): 135-147.
|
21 |
Gu R, Cui T, Guo Y, et al. Angiotensin-(1-7) ameliorates intestinal barrier dysfunction by activating the Keap1 / Nrf2 / HO-1 signaling pathway in acute pancreatitis[J]. Mol Biol Rep, 2023, 50 (7): 5991-6003.
|
22 |
Yang J, Sha X, Wu D, et al. Formononetin alleviates acute pancreatitis by reducing oxidative stress and modulating intestinal barrier[J]. Chin Med, 2023, 18 (1): 78.
|
23 |
Liu X, Zhu Q, Zhang M, et al. Isoliquiritigenin ameliorates acute pancreatitis in mice via inhibition of oxidative stress and modulation of the Nrf2 / HO-1 pathway[J]. Oxid Med Cell Longev, 2018, 2018: 7161592.
|
24 |
Yuan C, Dong X, Xu S, et al. AKBA alleviates experimental pancreatitis by inhibiting oxidative stress in macrophages through the Nrf2 / HO-1 pathway[J]. Int Immunopharmacol, 2023, 121: 110501.
|
25 |
Burzyński J, Fichna J, Tarasiuk A. Putative molecular targets for vitamin A in neutralizing oxidative stress in acute and chronic pancreatitis — a systematic review[J]. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396 (7): 1361-1370.
|
26 |
Yang S, Xie Z, Pei T, et al. Salidroside attenuates neuronal ferroptosis by activating the Nrf2 / HO1 signaling pathway in Aβ1-42-induced Alzheimer's disease mice and glutamate-injured HT22 cells[J]. Chin Med, 2022, 17 (1): 82.
|
27 |
Shi Z, Wang Y, Ye W, et al. The LipoxinA4 receptor agonist BML-111 ameliorates intestinal disruption following acute pancreatitis through the Nrf2-regulated antioxidant pathway[J]. Free Radic Biol Med, 2021, 163: 379-391.
|
28 |
Tiruveedi VL, Bale S, Khurana A, et al. Withaferin A, a novel compound of Indian ginseng (Withania somnifera), ameliorates Cerulein-induced acute pancreatitis: possible role of oxidative stress and inflammation[J]. Phytother Res, 2018, 32 (12): 2586-2596.
|
29 |
Alruhaimi RS, Hassanein EHM, Abd El-Aziz MK, et al. The melatonin receptor agonist agomelatine protects against acute pancreatitis induced by cadmium by attenuating inflammation and oxidative stress and modulating Nrf2 / HO-1 pathway[J]. Int Immunopharmacol, 2023, 124 (Pt A): 110833.
|
30 |
Li ST, Dai Q, Zhang SX, et al. Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK / NF-κB signaling pathway and activating the PI3K / Akt / Nrf2 pathway[J]. Acta Pharmacol Sin, 2018, 39 (8): 1294-1304.
|
31 |
Li J, Han J, Lv J, et al. Saikosaponin A-induced gut microbiota changes attenuate severe acute pancreatitis through the activation of Keap1 / Nrf2-ARE antioxidant signaling[J]. Oxid Med Cell Longev, 2020, 2020: 9217219.
|
32 |
Ren Z, Yang F, Wang X, et al. Chronic plus binge ethanol exposure causes more severe pancreatic injury and inflammation[J]. Toxicol Appl Pharmacol, 2016, 308: 11-19.
|
33 |
Sun J, Fu J, Zhong Y, et al. NRF2 mitigates acute alcohol-induced hepatic and pancreatic injury in mice[J]. Food Chem Toxicol, 2018, 121: 495-503.
|
34 |
Lee J, Lim JW, Kim H. Lycopene inhibits IL-6 expression by upregulating NQO1 and HO-1 via activation of Nrf2 in ethanol / lipopolysaccharide-stimulated pancreatic acinar cells[J]. Antioxidants (Basel), 2022, 11 (3): 519.
|
35 |
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25 (3): 486-541.
|
36 |
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22 (4): 266-282.
|
37 |
Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6 (1): 49.
|
38 |
Capelletti MM, Manceau H, Puy H, et al. Ferroptosis in liver diseases: an overview[J]. Int J Mol Sci, 2020, 21 (14): 4908.
|
39 |
Dai E, Han L, Liu J, et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173 / STING-dependent DNA sensor pathway[J]. Nat Commun, 2020, 11 (1): 6339.
|
40 |
Fan R, Sui J, Dong X, et al. Wedelolactone alleviates acute pancreatitis and associated lung injury via GPX4 mediated suppression of pyroptosis and ferroptosis[J]. Free Radic Biol Med, 2021, 173: 29-40.
|
41 |
Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease relevance of ferroptosis[J]. Trends Cell Biol, 2020, 30 (6): 478-490.
|
42 |
Liu K, Liu J, Zou B, et al. Trypsin-mediated sensitization to ferroptosis increases the severity of pancreatitis in mice[J]. Cell Mol Gastroenterol Hepatol, 2022, 13 (2): 483-500.
|
43 |
Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11 (2): 88.
|
44 |
Yuan H, Pratte J, Giardina C. Ferroptosis and its potential as a therapeutic target[J]. Biochem Pharmacol, 2021, 186: 114486.
|
45 |
Ryter SW. Heme oxgenase-1, a cardinal modulator of regulated cell death and inflammation[J]. Cells, 2021, 10 (3): 515.
|
46 |
Rada P, Rojo AI, Chowdhry S, et al. SCF / β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner[J]. Mol Cell Biol, 2011, 31 (6): 1121-1133.
|
47 |
Adedoyin O, Boddu R, Traylor A, et al. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells[J]. Am J Physiol Renal Physiol, 2018, 314 (5): F702-F714.
|
48 |
Kwon MY, Park E, Lee SJ, et al. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death[J]. Oncotarget, 2015, 6 (27): 24393-24403.
|
49 |
Li H, Lin Y, Zhang L, et al. Ferroptosis and its emerging roles in acute pancreatitis[J]. Chin Med J (Engl), 2022, 135 (17): 2026-2034.
|
50 |
Huang J, Tabbi-Anneni I, Gunda V, et al. Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 299 (6): G1211-G1221.
|
51 |
Jung KA, Choi BH, Nam CW, et al. Identification of aldo-keto reductases as NRF2-target marker genes in human cells[J]. Toxicol Lett, 2013, 218 (1): 39-49.
|
52 |
Kim D, Choi BH, Ryoo IG, et al. High NRF2 level mediates cancer stem cell-like properties of aldehyde dehydrogenase (ALDH)-high ovarian cancer cells: inhibitory role of all-trans retinoic acid in ALDH / NRF2 signaling[J]. Cell Death Dis, 2018, 9 (9): 896.
|
53 |
Cheng C, Yuan F, Chen XP, et al. Inhibition of Nrf2-mediated glucose metabolism by brusatol synergistically sensitizes acute myeloid leukemia to Ara-C[J]. Biomed Pharmacother, 2021, 142: 111652.
|
54 |
Xu Y, Li Y, Li J, et al. Ethyl carbamate triggers ferroptosis in liver through inhibiting GSH synthesis and suppressing Nrf2 activation[J]. Redox Biol, 2022, 53: 102349.
|
55 |
Reszka E, Wieczorek E, Jablonska E, et al. Association between plasma selenium level and NRF2 target genes expression in humans[J]. J Trace Elem Med Biol, 2015, 30: 102-106.
|
56 |
Chen X, Yu C, Kang R, et al. Cellular degradation systems in ferroptosis[J]. Cell Death Differ, 2021, 28 (4): 1135-1148.
|
57 |
Fusco R, Cordaro M, Siracusa R, et al. Biochemical evaluation of the antioxidant effects of hydroxytyrosol on pancreatitis-associated gut injury[J]. Antioxidants (Basel), 2020, 9 (9): 781.
|
58 |
Robles L, Vaziri ND, Li S, et al. Synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) ameliorates acute pancreatitis[J]. Pancreas, 2016, 45 (5): 720-729.
|
59 |
Yao J, Miao Y, Zhang Y, et al. Dao-Chi powder ameliorates pancreatitis-induced intestinal and cardiac injuries via regulating the Nrf2-HO-1-HMGB1 signaling pathway in rats[J]. Front Pharmacol, 2022, 13: 922130.
|
60 |
Garg PK, Singh VP. Organ failure due to systemic injury in acute pancreatitis[J]. Gastroenterology, 2019, 156 (7): 2008-2023.
|
61 |
Li X, Chen J, Feng W, et al. Berberine ameliorates iron levels and ferroptosis in the brain of 3 × Tg-AD mice[J]. Phytomedicine, 2023, 118: 154962.
|
62 |
Zhang M, Wu YQ, Xie L, et al. Isoliquiritigenin protects against pancreatic injury and intestinal dysfunction after severe acute pancreatitis via Nrf2 signaling[J]. Front Pharmacol, 2018, 9: 936.
|
63 |
Munir F, Jamshed MB, Shahid N, et al. Current status of diagnosis and Mesenchymal stem cells therapy for acute pancreatitis[J]. Physiol Rep, 2019, 7 (21): e14170.
|
64 |
Yu Y, Yang Y, Yang M, et al. Hydrogen gas reduces HMGB1 release in lung tissues of septic mice in an Nrf2 / HO-1-dependent pathway[J]. Int Immunopharmacol, 2019, 69: 11-18.
|
65 |
Yu Y, Yang Y, Bian Y, et al. Hydrogen gas protects against intestinal injury in wild type but not NRF2 knockout mice with severe sepsis by regulating HO-1 and HMGB1 release[J]. Shock, 2017, 48 (3): 364-370.
|
66 |
Wang J, Hu X, Xie J, et al. Beta-1-adrenergic receptors mediate Nrf2-HO-1-HMGB1 axis regulation to attenuate hypoxia / reoxygenation-induced cardiomyocytes injury in vitro[J]. Cell Physiol Biochem, 2015, 35 (2): 767-777.
|