| 1 |
Kumar R, Lim J, Mekary RA, et al. Traumatic spinal injury: global epidemiology and worldwide volume[J]. World Neurosurg, 2018 (113): e345-e363.
|
| 2 |
Jia Z, Zhu H, Li J, et al. Oxidative stress in spinal cord injury and antioxidant-based intervention[J]. Spinal Cord, 2012, 50 (4): 264-274.
|
| 3 |
Ono H, Nishijima Y, Adachi N, et al. A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level[J]. Med Gas Res, 2012, 2 (1): 21.
|
| 4 |
Nakao A, Toyoda Y, Sharma P, et al. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome—an open label pilot study[J]. J Clin Biochem Nutr, 2010, 46 (2): 140-149.
|
| 5 |
Ono H, Nishijima Y, Adachi N, et al. Hydrogen(H2) treatment for acute erythymatous skin diseases. A report of 4 patients with safety data and a non-controlled feasibility study with H2 concentration measurement on two volunteers[J]. Med Gas Res, 2012, 2 (1): 14.
|
| 6 |
Terawaki H, Hayashi Y, Zhu W, et al. Transperitoneal administration of dissolved hydrogen for peritoneal dialysis patients: a novel approach to suppress oxidative stress in the peritoneal cavity[J]. Med Gas Res, 2013, 3 (1): 14.
|
| 7 |
Chen X, Cui J, Zhai X, et al. Inhalation of hydrogen of different concentrations ameliorates spinal cord injury in mice by protecting spinal cord neurons from apoptosis, oxidative injury and mitochondrial structure damages[J]. Cell Physiol Biochem, 2018, 47 (1): 176-190.
|
| 8 |
国家卫生健康委办公厅,国家中医药管理局办公室.关于印发新型冠状病毒肺炎诊疗方案(试行第七版)的通知[EB/OL]. (2020-03-03) [2022-05-03].
URL
|
| 9 |
Chen C, Chen Q, Mao Y, et al. Hydrogen-rich saline protects against spinal cord injury in rats[J]. Neurochem Res, 2010, 35 (7): 1111-1118.
|
| 10 |
Fatima G, Sharma VP, Das SK, et al. Oxidative stress and antioxidative parameters in patients with spinal cord injury: implications in the pathogenesis of disease[J]. Spinal Cord, 2015, 53 (1): 3-6.
|
| 11 |
Khayrullina G, Bermudez S, Byrnes KR. Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury[J]. J Neuroinflammation, 2015 (12): 172.
|
| 12 |
Higuchi Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress[J]. Biochem Pharmacol, 2003, 66 (8): 1527-1535.
|
| 13 |
Tarantino G, Scopacasa F, Colao A, et al. Serum Bcl-2 concentrations in overweight-obese subjects with nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2011, 17 (48): 5280-5288.
|
| 14 |
Chen M, Tan M, Jing M, et al. Berberine protects homocysteic acid-induced HT-22 cell death: involvement of Akt pathway[J]. Metab Brain Dis, 2015, 30 (1): 137-142.
|
| 15 |
Huang JH, Yin XM, Xu Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats[J]. J Neurotrauma, 2017, 34 (24): 3388-3396.
|
| 16 |
Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch[J]. Nat Rev Cancer, 2002, 2 (9): 647-656.
|
| 17 |
Gao Y, Yang H, Fan Y, et al. Hydrogen-rich saline attenuates cardiac and hepatic injury in doxorubicin rat model by inhibiting inflammation and apoptosis[J]. Mediators Inflamm, 2016 (2016): 1320365.
|
| 18 |
Lu Z, Chen H, Zheng XM, et al. Experimental study on the apoptosis of cervical cancer Hela cells induced by juglone through c-Jun N-terminal kinase/c-Jun pathway[J]. Asian Pac J Trop Med, 2017, 10 (6): 572-575.
|
| 19 |
Bellver-Landete V, Bretheau F, Mailhot B, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury[J]. Nat Commun, 2019, 10 (1): 518.
|
| 20 |
Hilton BJ, Moulson AJ, Tetzlaff W. Neuroprotection and secondary damage following spinal cord injury: concepts and methods[J]. Neurosci Lett, 2017 (652): 3-10.
|
| 21 |
Gris D, Marsh DR, Oatway MA, et al. Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function[J]. J Neurosci, 2004, 24 (16): 4043-4051.
|
| 22 |
Popovich PG, Guan Z, Wei P, et al. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury[J]. Exp Neurol, 1999, 158 (2): 351-365.
|
| 23 |
Popovich PG, Guan Z, McGaughy V, et al. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation[J]. J Neuropathol Exp Neurol, 2002, 61 (7): 623-633.
|
| 24 |
Andersson U, Wang H, Palmblad K, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes[J]. J Exp Med, 2000, 192 (4): 565-570.
|
| 25 |
Wang Q, Ding Q, Zhou Y, et al. Ethyl pyruvate attenuates spinal cord ischemic injury with a wide therapeutic window through inhibiting high-mobility group box 1 release in rabbits[J]. Anesthesiology, 2009, 110 (6): 1279-1286.
|
| 26 |
Chen M, Zhang J, Chen Y, et al. Hydrogen protects lung from hypoxia/re-oxygenation injury by reducing hydroxyl radical production and inhibiting inflammatory responses[J]. Sci Rep, 2018, 8 (1): 8004.
|
| 27 |
Liu W, Shan LP, Dong XS, et al. Combined early fluid resuscitation and hydrogen inhalation attenuates lung and intestine injury[J]. World J Gastroenterol, 2013, 19 (4): 492-502.
|
| 28 |
Yu Y, Yang Y, Yang M, et al. Hydrogen gas reduces HMGB1 release in lung tissues of septic mice in an Nrf2/HO-1-dependent pathway[J]. Int Immunopharmacol, 2019 (69): 11-18.
|
| 29 |
Baba T, Mukaida N. Role of macrophage inflammatory protein (MIP)-1α/CCL3 in leukemogenesis[J]. Mol Cell Oncol, 2014, 1 (1): e29899.
|
| 30 |
Pelisch N, Rosas Almanza J, Stehlik KE, et al. CCL3 contributes to secondary damage after spinal cord injury[J]. J Neuroinflammation, 2020, 17 (1): 362.
|
| 31 |
Zhou HJ, Wang LQ, Wang DB, et al. Long noncoding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via the modulation of a miR-199b/IKKβ/NF-κB signaling pathway[J]. Am J Physiol Cell Physiol, 2018, 315 (1): C52-C61.
|
| 32 |
Zhou HJ, Wang LQ, Xu QS, et al. Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells[J]. Exp Cell Res, 2016, 349 (1): 60-67.
|
| 33 |
杨晓慧,张钦,庾红林,等.过氧化物酶体增殖物激活受体γ激动剂对脊髓损伤后大鼠自噬相关蛋白表达的抑制作用[J/CD].中华危重症医学杂志(电子版),2019,12(4):223-228.
|
| 34 |
He M, Ding Y, Chu C, et al. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury[J]. Proc Natl Acad Sci U S A, 2016, 113 (40): 11324-11329.
|
| 35 |
Liu S, Sarkar C, Dinizo M, et al. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death[J]. Cell Death Dis, 2015, 6 (1): e1582.
|
| 36 |
Liu X, Tian F, Wang S, et al. Astrocyte autophagy flux protects neurons against oxygen-glucose deprivation and ischemic/reperfusion injury[J]. Rejuvenation Res, 2018, 21 (5): 405-415.
|
| 37 |
Bisicchia E, Latini L, Cavallucci V, et al. Autophagy inhibition favors survival of rubrospinal neurons after spinal cord hemisection[J]. Mol Neurobiol, 2016, 54 (7): 4896-4907.
|
| 38 |
Wang H, Huo X, Chen H, et al. Hydrogen-rich saline activated autophagy via HIF-1α pathways in neuropathic pain model[J]. Biomed Res Int, 2018 (2018): 4670834.
|
| 39 |
Chen H, Zhou C, Xie K, et al. Hydrogen-rich saline alleviated the hyperpathia and microglia activation via autophagy mediated inflammasome inactivation in neuropathic pain rats[J]. Neuroscience, 2019 (421): 17-30.
|
| 40 |
Jiang X, Niu X, Guo Q, et al. FoxO1-mediated autophagy plays an important role in the neuroprotective effects of hydrogen in a rat model of vascular dementia[J]. Behav Brain Res, 2019 (356): 98-106.
|
| 41 |
Ichihara M, Sobue S, Ito M, et al. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles[J]. Med Gas Res, 2015 (5): 12.
|
| 42 |
Nagatani K, Nawashiro H, Takeuchi S, et al. Safety of intravenous administration of hydrogen-enriched fluid in patients with acute cerebral ischemia: initial clinical studies[J]. Med Gas Res, 2013 (3): 13.
|
| 43 |
Liu X, Ma C, Wang X, et al. Hydrogen coadministration slows the development of COPD-like lung disease in a cigarette smoke-induced rat model[J]. Int J Chron Obstruct Pulmon Dis, 2017 (12): 1309-1324.
|
| 44 |
Xun ZM, Zhao QH, Zhang Y, et al. Effects of long-term hydrogen intervention on the physiological function of rats[J]. Sci Rep, 2020, 10 (1): 18509.
|