1 |
Fukuhara K, Nakashima T, Abe M, et al. Suplatast tosilate protects the lung against hyperoxic lung injury by scavenging hydroxyl radicals[J]. Free Radic Biol Med, 2017 (106): 1-9.
|
2 |
方以群,张懿. 高氧诱导的急性肺损伤研究现状及治疗靶点[J]. 转化医学杂志,2013,2(5):260-265.
|
3 |
Asikainen TM, White CW. Pulmonary antioxidant de-fenses in the preterm newborn with respiratory distress and bronchopulmonary dysplasia in evolution: implications for antioxidant therapy[J]. Antioxid Redox Signal, 2004, 6 (1): 155-167.
|
4 |
Bai YX, Fang F, Jiang JL, et al. Extrinsic calcitonin gene-related peptide inhibits hyperoxia-induced alveolar epithelial type Ⅱ cells apoptosis, oxidative stress, and reactive oxygen species (ROS) production by enhancing notch 1 and homocysteine-induced endoplasmic reticulum protein (HERP) expression[J]. Med Sci Monit, 2017 (23): 5774-5782.
|
5 |
Kim MJ, Ryu JC, Kwon Y, et al. Dual oxidase 2 in lung epithelia is essential for hyperoxia-induced acute lung injury in mice[J]. Antioxid Redox Signal, 2014, 21 (13): 1803-1818.
|
6 |
Ren T, Zhang H, Wang J, et al. MCU-dependent mi-tochondrial Ca2+ inhibits NAD+ / SIRT3 / SOD2 pathway to promote ROS production and metastasis of HCC cells[J]. Oncogene, 2017, 36 (42): 5897-5909.
|
7 |
Kurundkar D, Kurundkar AR, Bone NB, et al. SIRT3 diminishes inflammation and mitigates endotoxin-induced acute lung injury[J]. JCI Insight, 2019, 4 (1): e120722.
|
8 |
王晓霞,李玉兰,沙小兰,等. 去铁胺对大鼠高氧肺损伤的影响[J]. 中华麻醉学杂志,2019,39(8):931-934.
|
9 |
Harijith A, Pendyala S, Ebenezer DL, et al. Hypero-xiainduced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P / S1P1&2 signaling axis in lung endothelium[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 311 (2): L337-L351.
|
10 |
Zou D, Li J, Fan Q, et al. Reactive oxygen and ni-trogen species induce cell apoptosis via a mitochondria-dependent pathway in hyperoxia lung injury[J]. J Cell Biochem, 2019, 120 (4): 4837-4850.
|
11 |
汤鲁明,王林霞,孙来芳,等. 萝卜硫素对脓毒症急性肺损伤大鼠氧化损伤及脱嘌呤/脱嘧啶核酸内切酶1表达的影响[J/CD]. 中华危重症医学杂志(电子版),2017,10(4):246-251.
|
12 |
Peng TI, Jou MJ. Oxidative stress caused by mitoch-ondrial calcium overload[J]. Ann N Y Acad Sci, 2010 (1201): 183-188.
|
13 |
Chakraborty PK, Mustafi SB, Xiong X, et al. MICU1 drives glycolysis and chemoresistance in ovarian cancer[J]. Nat Commun, 2017 (8): 14634.
|
14 |
Feissner RF, Skalska J, Gaum WE, et al. Crosstalk signaling between mitochondrial Ca2+ and ROS[J]. Front Biosci (Landmark Ed), 2009 (14): 1197-1218.
|
15 |
Chen J, Wang A, Chen Q. SirT3 and p53 deacet-ylation in aging and cancer[J]. J Cell Physiol, 2017, 232 (9): 2308-2311.
|
16 |
Salvatori I, Valle C, Ferri A, et al. SIRT3 and mi-tochondrial metabolism in neurodegenerative diseases[J]. Neurochem Int, 2017 (109): 184-192.
|
17 |
He X, Zeng H, Chen JX. Emerging role of SIRT3 in endothelial metabolism, angiogenesis, and cardiovascular disease[J]. J Cell Physiol, 2019, 234 (3): 2252-2265.
|
18 |
Elustondo PA, Nichols M, Robertson GS, et al. Mito-chondrial Ca2+ uptake pathways[J]. J Bioenerg Biomembr, 2017, 49 (1): 113-119.
|
19 |
Yuan Z, Cao A, Liu H, et al. Calcium uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes[J]. J Cell Biochem, 2017, 118 (9): 2809-2818.
|
20 |
Berthiaume JM, Kurdys JG, Muntean DM, et al. Mito-chondrial NAD+ / NADH redox state and diabetic cardiomyopathy[J]. Antioxid Redox Signal, 2019, 30 (3): 375-398.
|
21 |
Jing E, Emanuelli B, Hirschey MD, et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production[J]. Proc Natl Acad Sci U S A, 2011, 108 (35): 14608-14613.
|
22 |
Chen Y, Zhang J, Lin Y, et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS[J]. EMBO Rep, 2011, 12 (6): 534-541.
|
23 |
Asimakis GK, Lick S, Patterson C. Postischemic recovery of contractile function is impaired in SOD2+ / - but not SOD1+ / - mouse hearts[J]. Circulation, 2002, 105 (8): 981-986.
|