1 |
Ibánez-Martínez E, Ruiz-Gaitán A, Pemán-García J. Update on the diagnosis of invasive fungal infection[J]. Rev Esp Quimioter, 2017 (30 Suppl 1): 16-21.
|
2 |
Honarvar B, Bagheri Lankarani K, Taghavi M, et al. Biomarker-guided antifungal stewardship policies for patients with invasive candidiasis[J]. Curr Med Mycol, 2018, 4 (4): 37-44.
|
3 |
Vergidis P, Clancy CJ, Shields RK, et al. Intra-abdominal candidiasis: the importance of early source control and antifungal treatment[J]. PLoS One, 2016, 11 (4): e0153247.
|
4 |
戴敏惠,潘频华.重症监护室侵袭性支气管肺曲霉病高危因素研究进展[J/CD].中华危重症医学杂志(电子版),2016,9(5):352-355.
|
5 |
Moura S, Cerqueira L, Almeida A. Invasive pulmonary aspergillosis: current diagnostic methodologies and a new molecular approach[J]. Eur J Clin Microbiol Infect Dis, 2018, 37 (8): 1393-1403.
|
6 |
Prattes J, Flick H, Prüller F, et al. Novel tests for diagnosis of invasive aspergillosis in patients with underlying respiratory diseases[J]. Am J Respir Crit Care Med, 2014, 190 (8): 922-929.
|
7 |
Orsi CF, Gennari W, Venturelli C, et al. Performance of 2 commercial real-time polymerase chain reaction assays for the detection of Aspergillus and pneumocystis DNA in bronchoalveolar lavage fluid samples from critical care patients[J]. Diagn Microbiol Infect Dis, 2012, 73 (2): 138-143.
|
8 |
中华医学会重症医学分会.重症患者侵袭性真菌感染诊断与治疗指南(2007)[J].中华内科杂志,2007,46(11):960-966.
|
9 |
Richardson M, Page I. Role of serological tests in the diagnosis of mold infections[J]. Curr Fungal Infect Rep, 2018, 12 (3): 127-136.
|
10 |
Valero C, de la Cruz-Villar L, Zaragoza O, et al. New panfungal real-time PCR assay for diagnosis of invasive fungal infections[J]. J Clin Microbiol, 2016, 54 (12): 2910-2918.
|
11 |
Otasevic S, Momcilovic S, Stojanovic NM, et al. Non-culture based assays for the detection of fungal pathogens[J]. J Mycol Med, 2018, 28 (2): 236-248.
|
12 |
Nguyen MH, Wissel MC, Shields RK, et al. Performance of Candida real-time polymerase chain reaction, β-D-glucan assay, and blood cultures in the diagnosis of invasive candidiasis[J]. Clin Infect Dis, 2012, 54 (9): 1240-1248.
|
13 |
Mekha N, Sugita T, Ikeda R, et al. Real-time PCR assay to detect DNA in sera for the diagnosis of deep-seated trichosporonosis[J]. Microbiol Immunol, 2007, 51 (6): 633-635.
|
14 |
Marras SAE, Tyagi S, Antson DO, et al. Color-coded molecular beacons for multiplex PCR screening assays[J]. PLoS One, 2019, 14 (3): e0213906.
|
15 |
El-Hajj HH, Marras SA, Tyagi S, et al. Use of sloppy molecular beacon probes for identification of mycobacterial species[J]. J Clin Microbiol, 2009, 47(4): 1190-1198.
|
16 |
Chakravorty S, Aladegbami B, Burday M, et al. Rapid universal identification of bacterial pathogens from clinical cultures by using a novel sloppy molecular beacon melting temperature signature technique[J]. J Clin Microbiol, 2010, 48 (1): 258-267.
|
17 |
Rezaei F, Haeili M, Fooladi AI, et al. High resolution melting curve analysis for rapid detection of streptomycin and ethambutol resistance in mycobacterium tuberculosis[J]. Maedica (Buchar), 2017, 12 (4): 246-257.
|
18 |
Negi SS, Singh P, Bhargava A, et al. Effective pragmatic approach of diagnosis of multidrug-resistant tuberculosis by high-resolution melt curve assay[J]. Int J Mycobacteriol, 2018, 7 (3): 228-235.
|
19 |
曹楠楠.利用高分辨熔解曲线分析技术快速检测鉴定四种临床常见侵袭性曲霉菌的方法学研究[D].南方医科大学,2012.
|
20 |
Horváth A, Peto Z, Urbán E, et al. A novel, multiplex, real-time PCR-based approach for the detection of the commonly occurring pathogenic fungi and bacteria[J]. BMC Microbiol, 2013 (13): 300.
|