[1] |
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315 (8): 801-810.
|
[2] |
Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315 (8): 775-787.
|
[3] |
The ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin Definition[J]. JAMA, 2012, 307 (23): 2526-2533.
|
[4] |
Laffey JG, Matthay MA. Fifty years of research in ARDS. Cell-based therapy for acute respiratory distress syndrome. Biology and potential therapeutic value[J]. Am J Respir Crit Care Med, 2017, 196 (3): 266-273.
|
[5] |
Morrell ED, Bhatraju PK, Mikacenic CR, et al. Alveolar macrophage transcriptional programs are associated with outcomes in acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2019, 200 (6): 732-741.
|
[6] |
Li H, Zhou X, Tan H, et al. Neutrophil extracellular traps contribute to the pathogenesis of acid-aspiration-induced ALI/ARDS[J]. Oncotarget, 2018, 9 (2): 1772-1784.
|
[7] |
Liu S, Su X, Pan P, et al. Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury[J]. Sci Rep, 2016 (6): 37252.
|
[8] |
何流漾,郑建洲,夏蕾,等.炎症反应在ARDS中的作用机制研究进展[J].中华危重病急救医学,2017,29(7):651-655.
|
[9] |
Yuan Y, Alwis I, Wu MCL, et al. Neutrophil macroaggregates promote widespread pulmonary thrombosis after gut ischemia[J]. Sci Transl Med, 2017, 9 (409): eaam5861.
|
[10] |
Park I, Kim M, Choe K, et al. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury[J]. Eur Respir J, 2019, 53 (3): 1800786.
|
[11] |
Lee YL, Obiako B, Gorodnya OM, et al. Mitochondrial DNA damage initiates acute lung injury and multi-organ system failure evoked in rats by intra-tracheal pseudomonas aeruginosa[J]. Shock, 2017, 48 (1): 54-60.
|
[12] |
Kozlov AV, Lancaster JR Jr, Meszaros AT, et al. Mitochondria-meditated pathways of organ failure upon inflammation[J]. Redox Biol, 2017, (13): 170-181.
|
[13] |
Timmermans K, Kox M, Vaneker M, et al. Mitochon-drial DNA and TLR9 signaling is not involved in mechanical ventilation-induced inflammation[J]. Anesth Analg, 2017, 124 (2): 531-534.
|
[14] |
Madaio MP, Czikora I, Kvirkvelia N, et al. The TNF-derived TIP peptide activates the epithelial sodium channel and ameliorates experimental nephrotoxic serum nephritis[J]. Kidney Int, 2019, 95 (6): 1359-1372.
|
[15] |
Jin B, Jin H. Oxymatrine attenuates lipopolysaccharide-induced acute lung injury by activating the epithelial sodium channel and suppressing the JNK signaling pathway[J]. Exp Anim, 2018, 67 (3): 337-347.
|
[16] |
Vassiliou AG, Manitsopoulos N, Kardara M, et al. Differential expression of aquaporins in experimental models of acute lung injury[J]. In Vivo, 2017, 31 (5): 885-894.
|
[17] |
Matute-Bello G, Downey G, Moore BB, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals[J]. Am J Respir Cell Mol Biol, 2011, 44 (5): 725-738.
|
[18] |
Laffey JG, Kavanagh BP. Fifty years of research in ARDS. Insight into acute respiratory distress syndrome. From models to patients[J]. Am J Respir Crit Care Med, 2017, 196 (1): 18-28.
|
[19] |
Mei SH, Haitsma JJ, Dos Santos CC, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis[J]. Am J Respir Crit Care Med, 2010, 182 (8): 1047-1057.
|
[20] |
Németh K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production[J]. Nat Med, 2009, 15 (1): 42-49.
|
[21] |
Li JW, Wu X. Mesenchymal stem cells ameliorate LPS-induced acute lung injury through KGF promoting alveolar fluid clearance of alveolar type Ⅱ cells[J]. Eur Rev Med Pharmacol Sci, 2015, 19 (13): 2368-2378.
|
[22] |
Miao LL, Luo L, Wang DX. Role of Ang-2 in the rats model of LPS-induced acute lung injury[J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2009, 25 (11): 1005-1007.
|
[23] |
Liu K, Ji K, Guo L, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer[J]. Microvasc Res, 2014 (92): 10-18.
|
[24] |
Jackson MV, Morrison TJ, Doherty DF, et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS[J]. Stem Cells, 2016, 34 (8): 2210-2223.
|
[25] |
Morrison TJ, Jackson MV, Cunningham EK, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer[J]. Am J Respir Crit Care Med, 2017, 196 (10): 1275-1286.
|
[26] |
Phinney DG, Di Giuseppe M, Njah J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs[J]. Nat Commun, 2015 (6): 8472.
|
[27] |
Zheng G, Huang L, Tong H, et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study[J]. Respir Res, 2014 (15): 39.
|
[28] |
Matthay MA, Pati S, Lee JW. Concise review: mesenchymal stem (stromal) cells: biology and preclinical evidence for therapeutic potential for organ dysfunction following trauma or sepsis[J]. Stem Cells, 2016, 35 (2): 316-324.
|