[1] |
Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome[J]. N Engl J Med, 2013, 368 (23): 2159-2168.
|
[2] |
何丹鸯,刘洁泉,吴春蕾,等.脓毒症并发急性呼吸窘迫综合征在急诊ICU的急救和护理[J/CD].中华危重症医学杂志:电子版,2015,8(3):203-205.
|
[3] |
Hamacher J, Lucas R, Lijnen HR, et al. Tumor necrosis factor-alpha and angiostatin are mediators of endothelial cytotoxicity in bronchoalveolar lavages of patients with acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2002, 166 (5): 651-656.
|
[4] |
Lee AS, Mira-Avendano I, Ryu JH, et al. The burden of idiopathic pulmonary fibrosis: an unmet public health need[J]. Respir Med, 2014, 108 (7): 955-967.
|
[5] |
Cottin V, Crestani B, Valeyre D, et al. Diagnosis and management of idiopathic pulmonary fibrosis: French practical guidelines[J]. Eur Respir Rev, 2014, 23 (132): 193-214.
|
[6] |
Knipe RS, Tager AM, Liao JK. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis[J]. Pharmacol Rev, 2015, 67 (1): 103-117.
|
[7] |
Thickett DR, Kendall C, Spencer LG, et al. Improving care for patients with idiopathic pulmonary fibrosis (IPF) in the UK: a round table discussion[J]. Thorax, 2014, 69 (12): 1136-1140.
|
[8] |
Fernandez IE, Eickelberg O. The impact of TGF-β on lung fibrosis: from targeting to biomarkers[J]. Proc Am Thorac Soc, 2012, 9 (3): 111-116.
|
[9] |
Lepparanta O, Sens C, Salmenkivi K, et al. Regulation of TGF-β storage and activation in the human idiopathic pulmonary fibrosis lung [J]. Cell Tissue Res, 2012, 348 (3): 491-503.
|
[10] |
Upton PD, Davies RJ, Tajsic T, et al. Transforming growth factor-β1 represses bone morphogenetic protein-mediated Smad signaling in pulmonary artery smooth muscle cells via Smad3[J]. Am J Respir Cell Mol Biol, 2013, 49 (6): 1135-1145.
|
[11] |
Lee MR, Lee GH, Lee HY, et al. BAX inhibitor-1-associated V-ATPase glycosylation enhances collagen degradation in pulmonary fibrosis[J]. Cell Death Dis, 2014 (5): e1113.
|
[12] |
Dhainaut JF, Charpentier J, Chiche JD. Transforming growth factor-beta: a mediator cell regulation in acute respiratory distress syndrome[J]. Crit Care Med, 2003, 31 (4 Suppl): S258-S264.
|
[13] |
Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis[J]. J Exp Med, 2010, 207 (8): 1589-1597.
|
[14] |
Marquez RT, Bandyopadhyay S, Wendlandt EB, et al. Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans[J]. Lab Invest, 2010, 90 (12): 1727-1736.
|
[15] |
Davis BN, Hilyard AC, Lagna G, et al. SMAD proteins control DROSHA-mediated microRNA maturation[J]. Nature, 2008, 454 (7200): 56-61.
|
[16] |
Rittirsch D, Huber-Lang MS, Flierl MA, et al. Immunodesign of experimental sepsis by cecal ligation and puncture[J]. Nat Protoc, 2009, 4 (1): 31-36.
|
[17] |
Venkatesan N, Tsuchiya K, Kolb M, et al. Glycosyltransferases and glycosaminoglycans in bleomycin and transforming growth factor-β1-induced pulmonary fibrosis[J]. Am J Respir Cell Mol Biol, 2014, 50 (3): 583-594.
|
[18] |
Walraven M, Gouverneur M, Middelkoop E, et al. Altered TGF-β signaling in fetal fibroblasts: what is known about the underlying mechanisms?[J]. Wound Repair Regen, 2014, 22 (1): 3-13.
|
[19] |
Booton R, Lindsay MA. Emerging role of microRNAs and long noncoding RNAs in respiratory disease[J]. Chest, 2014, 146 (1): 193-204.
|
[20] |
Wang YC, Liu JS, Chen JY, et al. miR-29 mediates TGFβ1-induced extracellular matrix synthesis through activation of Wnt/β-catenin pathway in human pulmonary fibroblasts[J]. Technol Health Care, 2015, 23 (Suppl 1): S119-S125.
|
[21] |
Pandit KV, Milosevic J. MicroRNA regulatory networks in idiopathic pulmonary fibrosis[J]. Biochem Cell Biol, 2015, 93 (2): 129-137.
|