1 |
Park ES, Yang HJ, Park JB. Pediatric traumatic brain injury: the epidemiology in Korea[J]. J Korean Neurosurg Soc, 2022, 65 (3): 334-341.
|
2 |
曾子桓,张灏,陈伟强,等. 颅脑损伤后继发性脑损伤发病机制的研究进展[J]. 中国临床神经外科杂志,2019,24(2):777-779.
|
3 |
高昕,沈秀兰,干彩琴,等. 失效模式与效应分析模式结合全方位多角度急诊护理在重型颅脑损伤患者急救中的应用[J/OL]. 中华危重症医学杂志(电子版),2023,16(3):261-264.
|
4 |
Ghaith HS, Nawar AA, Gabra MD, et al. A literature review of traumatic brain injury biomarkers[J]. Mol Neurobiol, 2022, 59 (7): 4141-4158.
|
5 |
Kim DS, Kim GW. Biofluid-based biomarkers in traumatic brain injury: a narrative review[J]. Brain Neurorehabil, 2024, 17 (1): e8.
|
6 |
Baudier J, Deloulme JC, Shaw GS. The Zn2+ and Ca2+-binding S100B and S100A1 proteins: beyond the myths[J]. Biol Rev Camb Philos Soc, 2020, 95 (3): 738-758.
|
7 |
Wang KK, Yang Z, Zhu T, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury[J]. Expert Rev Mol Diagn, 2018, 18 (2): 165-180.
|
8 |
Zhang H, Wang J, Qu Y, et al. Brain injury biomarkers and applications in neurological diseases[J]. Chin Med J (Engl), 2025, 138 (1): 5-14.
|
9 |
Vos PE, Jacobs B, Andriessen TM, et al. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study[J]. Neurology, 2010, 75 (20): 1786-1793.
|
10 |
Dadas A, Washington J, Diaz-Arrastia R, et al. Biomarkers in traumatic brain injury (TBI): a review[J]. Neuropsychiatr Dis Treat, 2018, 14: 2989-3000.
|
11 |
Sandler SJ, Figaji AA, Adelson PD. Clinical applications of biomarkers in pediatric traumatic brain injury[J]. Childs Nerv Syst, 2010, 26 (2): 205-213.
|
12 |
朱磊,王学成,徐妍妍,等. 缺氧诱导因子1α、Bc1-2/腺病毒E1B19kDa相互作用蛋白3在儿童创伤性脑损伤中的表达及意义[J]. 中国当代儿科杂志,2024,26(4):378-384.
|
13 |
Munoz Pareja JC, de Rivero Vaccari JP, Chavez MM, et al. Prognostic and diagnostic utility of serum biomarkers in pediatric traumatic brain injury[J]. J Neurotrauma, 2024, 41 (1-2): 106-122.
|
14 |
Piazza O, Storti MP, Cotena S, et al. S100B is not a reliable prognostic index in paediatric TBI[J]. Pediatr Neurosurg, 2007, 43 (4): 258-264.
|
15 |
Park DW, Park SH, Hwang SK. Serial measurement of S100B and NSE in pediatric traumatic brain injury[J]. Childs Nerv Syst, 2019, 35 (2): 343-348.
|
16 |
Barbu M, Jónsson K, Zetterberg H, et al. Serum biomarkers of brain injury after uncomplicated cardiac surgery: secondary analysis from a randomized trial[J]. Acta Anaesthesiol Scand, 2022, 66 (4): 447-453.
|
17 |
Wilkinson AA, Simic N, Frndova H, et al. Serum biomarkers help predict attention problems in critically ill children with traumatic brain injury[J]. Pediatr Crit Care Med, 2016, 17 (7): 638-648.
|
18 |
Berger RP, Beers SR, Richichi R, et al. Serum biomarker concentrations and outcome after pediatric traumatic brain injury[J]. J Neurotrauma, 2007, 24 (12): 1793-1801.
|
19 |
Meshcheryakov SV, Semenova ZB, Lukianov VI, et al. Prognosis of severe traumatic brain injury outcomes in children[J]. Acta Neurochir Suppl, 2018, 126: 11-16.
|
20 |
Kochanek PM, Berger RP, Bayir H, et al. Biomarkers of primary and evolving damage in traumatic and ischemic brain injury: diagnosis, prognosis, probing mechanisms, and therapeutic decision making[J]. Curr Opin Crit Care, 2008, 14 (2): 135-141.
|
21 |
Huang M, Dong XQ, Hu YY, et al. High S100B levels in cerebrospinal fluid and peripheral blood of patients with acute basal ganglial hemorrhage are associated with poor outcome[J]. World J Emerg Med, 2010, 1 (1): 22-31.
|
22 |
Jackson P, Thompson RJ. The demonstration of new human brain-specific proteins by high-resolution two-dimensional polyacrylamide gel electrophoresis[J]. J Neurol Sci, 1981, 49 (3): 429-438.
|
23 |
Tongaonkar P, Chen L, Lambertson D, et al. Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome[J]. Mol Cell Biol, 2000, 20 (13): 4691-4698.
|
24 |
Metzger RR, Sheng X, Niedzwecki CM, et al. Temporal response profiles of serum ubiquitin C-terminal hydrolase-L1 and the 145-kDa alpha II-spectrin breakdown product after severe traumatic brain injury in children[J]. J Neurosurg Pediatr, 2018, 22 (4): 369-374.
|
25 |
Mondello S, Kobeissy F, Vestri A, et al. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein after pediatric traumatic brain injury[J]. Sci Rep, 2016, 6: 28203.
|
26 |
Papa L, Mittal MK, Ramirez J, et al. Neuronal biomarker ubiquitin C-terminal hydrolase detects traumatic intracranial lesions on computed tomography in children and youth with mild traumatic brain injury[J]. J Neurotrauma, 2017, 34 (13): 2132-2140.
|
27 |
Papa L, Brophy GM, Welch RD, et al. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury[J]. JAMA Neurol, 2016, 73 (5): 551-560.
|
28 |
Berger RP, Hayes RL, Richichi R, et al. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and αII-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI[J]. J Neurotrauma, 2012, 29 (1): 162-167.
|
29 |
Toman E, Harrisson S, Belli T. Biomarkers in traumatic brain injury: a review[J]. J R Army Med Corps, 2016, 162 (2): 103-108.
|
30 |
Zetterberg H, Smith DH, Blennow K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood[J]. Nat Rev Neurol, 2013, 9 (4): 201-210.
|
31 |
Ryan E, Kelly L, Stacey C, et al. Traumatic brain injury in children: glial fibrillary acidic protein and clinical outcomes[J]. Pediatr Emerg Care, 2022, 38 (3): e1139-e1142.
|
32 |
Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker[J]. Trends Neurosci, 2015, 38 (6): 364-374.
|
33 |
Okonkwo DO, Puffer RC, Puccio AM, et al. Point-of-care platform blood biomarker testing of glial fibrillary acidic protein versus S100 calcium-binding protein B for prediction of traumatic brain injuries: a transforming research and clinical knowledge in traumatic brain injury study[J]. J Neurotrauma, 2020, 37 (23): 2460-2467.
|
34 |
Zurek J, Fedora M. The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury[J]. Acta Neurochir (Wien), 2012, 154 (1): 93-103; discussion 103.
|
35 |
Fraser DD, Close TE, Rose KL, et al. Severe traumatic brain injury in children elevates glial fibrillary acidic protein in cerebrospinal fluid and serum[J]. Pediatr Crit Care Med, 2011, 12 (3): 319-324.
|
36 |
Cheng F, Yuan Q, Yang J, et al. The prognostic value of serum neuron-specific enolase in traumatic brain injury: systematic review and meta-analysis[J]. PLoS One, 2014, 9 (9): e106680.
|
37 |
Kirino T, Brightman MW, Oertel WH, et al. Neuron-specific enolase as an index of neuronal regeneration and reinnervation[J]. J Neurosci, 1983, 3 (5): 915-923.
|
38 |
Forde CT, Karri SK, Young AM, et al. Predictive markers in traumatic brain injury: opportunities for a serum biosignature[J]. Br J Neurosurg, 2014, 28 (1): 8-15.
|
39 |
Fridriksson T, Kini N, Walsh-Kelly C, et al. Serum neuron-specific enolase as a predictor of intracranial lesions in children with head trauma: a pilot study[J]. Acad Emerg Med, 2000, 7 (7): 816-820.
|
40 |
Duda I, Wiórek A, Krzych LJ. Biomarkers facilitate the assessment of prognosis in critically ill patients with primary brain injury: a cohort study[J]. Int J Environ Res Public Health, 2020, 17 (12): 4458.
|
41 |
Bandyopadhyay S, Hennes H, Gorelick MH, et al. Serum neuron-specific enolase as a predictor of short-term outcome in children with closed traumatic brain injury[J]. Acad Emerg Med, 2005, 12 (8): 732-738.
|
42 |
Wilkinson AA, Dennis M, Simic N, et al. Brain biomarkers and pre-injury cognition are associated with long-term cognitive outcome in children with traumatic brain injury[J]. BMC Pediatr, 2017, 17 (1): 173.
|
43 |
Deber CM, Reynolds SJ. Central nervous system myelin: structure, function, and pathology[J]. Clin Biochem, 1991, 24 (2): 113-134.
|
44 |
Su E, Bell MJ, Kochanek PM, et al. Increased CSF concentrations of myelin basic protein after TBI in infants and children: absence of significant effect of therapeutic hypothermia[J]. Neurocrit Care, 2012, 17 (3): 401-407.
|
45 |
Thomas DG, Hoyle NR, Seeldrayers P. Myelin basic protein immunoreactivity in serum of neurosurgical patients[J]. J Neurol Neurosurg Psychiatry, 1984, 47 (2): 173-175.
|
46 |
Berger RP, Adelson PD, Pierce MC, et al. Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children[J]. J Neurosurg, 2005, 103 (1 Suppl): 61-68.
|
47 |
Crichton A, Ignjatovic V, Babl FE, et al. Interleukin-8 predicts fatigue at 12 months post-injury in children with traumatic brain injury[J]. J Neurotrauma, 2021, 38 (8): 1151-1163.
|
48 |
Malhotra AK, Ide K, Salaheen Z, et al. Acute fluid biomarkers for diagnosis and prognosis in children with mild traumatic brain injury: a systematic review[J]. Mol Diagn Ther, 2024, 28 (2): 169-187.
|
49 |
王立一,王子豪,范照鑫,等. 铁代谢在创伤性颅脑损伤中的研究进展[J]. 中国微侵袭神经外科杂志,2021,26(3):133-136.
|
50 |
Korley FK, Jain S, Sun X, et al. Prognostic value of day-of-injury plasma GFAP and UCH-L1 concentrations for predicting functional recovery after traumatic brain injury in patients from the US TRACK-TBI cohort: an observational cohort study[J]. Lancet Neurol, 2022, 21 (9): 803-813.
|
51 |
Undén J, Ingebrigtsen T, Romner B. Scandinavian guidelines for initial management of minimal, mild and moderate head injuries in adults: an evidence and consensus-based update[J]. BMC Med, 2013, 11: 50.
|
52 |
Bazarian JJ, Biberthaler P, Welch RD, et al. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study[J]. Lancet Neurol, 2018, 17 (9): 782-789.
|