1 |
Norberg KJ, Nania S, Li X, et al. RCAN1 is a marker of oxidative stress, induced in acute pancreatitis[J]. Pancreatology, 2018, 18 (7): 734-741.
|
2 |
郭丰. 重症急性胰腺炎腹腔引流时机的临床思考[J]. 中华消化外科杂志,2024,23(5):658-661.
|
3 |
Szatmary P, Grammatikopoulos T, Cai W, et al. Acute pancreatitis: diagnosis and treatment[J]. Drugs, 2022, 82 (12): 1251-1276.
|
4 |
杨晶,高青. 重症急性胰腺炎继发脓毒症的危险因素分析[J/OL]. 中华危重症医学杂志(电子版),2023,16(2):105-110.
|
5 |
Lee PJ, Papachristou GI. New insights into acute pancreatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16 (8): 479-496.
|
6 |
Hu F, Lou N, Jiao J, et al. Macrophages in pancreatitis: mechanisms and therapeutic potential[J]. Biomed Pharmacother, 2020, 131: 110693.
|
7 |
Pu WL, Bai RY, Zhou K, et al. Baicalein attenuates pancreatic inflammatory injury through regulating MAPK, STAT 3 and NF-κB activation[J]. Int Immunopharmacol, 2019, 72: 204-210.
|
8 |
Stojanovic B, Jovanovic IP, Stojanovic MD, et al. The emerging roles of the adaptive immune response in acute pancreatitis[J]. Cells, 2023, 12 (11): 1495.
|
9 |
Han H, Zhang L, Fu Q, et al. Plasma exosomes aggravate acute pancreatitis by promoting M1 polarization of adipose tissue macrophages in obesity-related severe acute pancreatitis[J]. Dig Dis Sci, 2023, 68 (9): 3660-3670.
|
10 |
Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity[J]. Annu Rev Pathol, 2020, 15: 123-147.
|
11 |
Mills EL, Kelly B, Logan A, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages[J]. Cell, 2016, 167 (2): 457-470.e13.
|
12 |
Chen J, Fu CY, Shen G, et al. Macrophages induce cardiomyocyte ferroptosis via mitochondrial transfer[J]. Free Radic Biol Med, 2022, 190: 1-14.
|
13 |
Ding L, Yang Y, Li H, et al. Circulating lymphocyte subsets induce secondary infection in acute pancreatitis[J]. Front Cell Infect Microbiol, 2020, 10: 128.
|
14 |
Sendler M, van den Brandt C, Glaubitz J, et al. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis[J]. Gastroenterology, 2020, 158 (1): 253-269.e14.
|
15 |
Wu J, Zhang L, Shi J, et al. Macrophage phenotypic switch orchestrates the inflammation and repair/regeneration following acute pancreatitis injury[J]. EBioMedicine, 2020, 58: 102920.
|
16 |
Brubaker L, Luu S, Hoffman K, et al. Microbiome changes associated with acute and chronic pancreatitis: a systematic review[J]. Pancreatology, 2021, 21 (1): 1-14.
|
17 |
Zhou Q, Tao X, Guo F, et al. Tryptophan metabolite norharman secreted by cultivated Lactobacillus attenuates acute pancreatitis as an antagonist of histone deacetylases[J]. BMC Med, 2023, 21 (1): 329.
|
18 |
Li H, Xie J, Guo X, et al. Bifidobacterium spp. and their metabolite lactate protect against acute pancreatitis via inhibition of pancreatic and systemic inflammatory responses[J]. Gut Microbes, 2022, 14 (1): 2127456.
|
19 |
Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host Microbe, 2018, 23 (6): 716-724.
|
20 |
Guay C, Kruit JK, Rome S, et al. Lymphocyte-derived exosomal microRNAs promote pancreatic β cell death and may contribute to type 1 diabetes development[J]. Cell Metab, 2019, 29 (2): 348-361.e6.
|
21 |
Saravanan PB, Vasu S, Yoshimatsu G, et al. Differential expression and release of exosomal miRNAs by human islets under inflammatory and hypoxic stress[J]. Diabetologia, 2019, 62 (10): 1901-1914.
|
22 |
Gao Y, Mi N, Wu W, et al. Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis[J]. J Extracell Vesicles, 2024, 13 (2): e12410.
|
23 |
Zheng Z, Cao F, Ding YX, et al. Acinous cell AR42J-derived exosome miR125b-5p promotes acute pancreatitis exacerbation by inhibiting M2 macrophage polarization via PI3K/AKT signaling pathway[J]. World J Gastrointest Surg, 2023, 15 (4): 600-620.
|
24 |
Samandari N, Mirza AH, Nielsen LB, et al. Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus[J]. Diabetologia, 2017, 60 (2): 354-363.
|
25 |
Tang DS, Cao F, Yan CS, et al. Acinar cell-derived extracellular vesicle miRNA-183-5p aggravates acute pancreatitis by promoting M1 macrophage polarization through downregulation of FoxO1[J]. Front Immunol, 2022, 13: 869207.
|
26 |
Wu XB, Sun HY, Luo ZL, et al. Plasma-derived exosomes contribute to pancreatitis-associated lung injury by triggering NLRP3-dependent pyroptosis in alveolar macrophages[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866 (5): 165685.
|
27 |
Xie Y, Yu L, Cheng Z, et al. SHED-derived exosomes promote LPS-induced wound healing with less itching by stimulating macrophage autophagy[J]. J Nanobiotechnology, 2022, 20 (1): 239.
|
28 |
Liu C, Hu F, Jiao G, et al. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury[J]. J Nanobiotechnology, 2022, 20 (1): 65.
|
29 |
You DG, Lim GT, Kwon S, et al. Metabolically engineered stem cell-derived exosomes to regulate macrophage heterogeneity in rheumatoid arthritis[J]. Sci Adv, 2021, 7 (23): eabe0083.
|
30 |
Habtezion A, Gukovskaya AS, Pandol SJ. Acute pancreatitis: a multifaceted set of organelle and cellular interactions[J]. Gastroenterology, 2019, 156 (7): 1941-1950.
|
31 |
Mareninova OA, Jia W, Gretler SR, et al. Transgenic expression of GFP-LC3 perturbs autophagy in exocrine pancreas and acute pancreatitis responses in mice[J]. Autophagy, 2020, 16 (11): 2084-2097.
|
32 |
Biczo G, Vegh ET, Shalbueva N, et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models[J]. Gastroenterology, 2018, 154 (3): 689-703.
|
33 |
Wang Z, Zhou H, Zheng H, et al. Autophagy-based unconventional secretion of HMGB1 by keratinocytes plays a pivotal role in psoriatic skin inflammation[J]. Autophagy, 2021, 17 (2): 529-552.
|
34 |
Mareninova OA, Sendler M, Malla SR, et al. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis[J]. Cell Mol Gastroenterol Hepatol, 2015, 1 (6): 678-694.
|
35 |
Zeng C, Wang R, Tan H. Role of pyroptosis in cardiovascular diseases and its therapeutic implications[J]. Int J Biol Sci, 2019, 15 (7): 1345-1357.
|
36 |
Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526 (7575): 660-665.
|
37 |
Wu X, Yao J, Hu Q, et al. Emodin ameliorates acute pancreatitis-associated lung injury through inhibiting the alveolar macrophages pyroptosis[J]. Front Pharmacol, 2022, 13: 873053.
|
38 |
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25 (3): 486-541.
|
39 |
Kloditz K, Fadeel B. Three cell deaths and a funeral: macrophage clearance of cells undergoing distinct modes of cell death[J]. Cell Death Discov, 2019, 5: 65.
|
40 |
New J, Thomas SM. Autophagy-dependent secretion: mechanism, factors secreted, and disease implications[J]. Autophagy, 2019, 15 (10): 1682-1693.
|
41 |
Liu J, Kuang F, Kroemer G, et al. Autophagy-dependent ferroptosis: machinery and regulation[J]. Cell Chem Biol, 2020, 27 (4): 420-435.
|
42 |
Liu J, Zhu S, Zeng L, et al. DCN released from ferroptotic cells ignites AGER-dependent immune responses[J]. Autophagy, 2022, 18 (9): 2036-2049.
|
43 |
Hu N, Zhang X, Zhang X, et al. Inhibition of Notch activity suppresses hyperglycemia-augmented polarization of macrophages to the M1 phenotype and alleviates acute pancreatitis[J]. Clin Sci (Lond), 2022, 136 (7): 455-471.
|
44 |
Peng C, Tu G, Wang J, et al. MLKL signaling regulates macrophage polarization in acute pancreatitis through CXCL10[J]. Cell Death Dis, 2023, 14 (2): 155.
|
45 |
Yang J, Tang X, Li B, et al. Sphingosine 1-phosphate receptor 2 mediated early stages of pancreatic and systemic inflammatory responses via NF-kappa B activation in acute pancreatitis[J]. Cell Commun Signal, 2022, 20 (1): 157.
|
46 |
Liu X, Luo W, Chen J, et al. USP25 deficiency exacerbates acute pancreatitis via up-regulating TBK1-NF-κB signaling in macrophages[J]. Cell Mol Gastroenterol Hepatol, 2022, 14 (5): 1103-1122.
|
47 |
Zhang L, Shi J, Du D, et al. Ketogenesis acts as an endogenous protective programme to restrain inflammatory macrophage activation during acute pancreatitis[J]. EBioMedicine, 2022, 78: 103959.
|
48 |
Li X, Shan C, Wu Z, et al. Emodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/ VEGF signaling pathway[J]. Inflamm Res, 2020, 69 (4): 365-373.
|
49 |
Xu Q, Wang M, Guo H, et al. Emodin alleviates severe acute pancreatitis-associated acute lung injury by inhibiting the cold-inducible RNA-binding protein (CIRP)-mediated activation of the NLRP3/IL-1β/CXCL1 signaling[J]. Front Pharmacol, 2021, 12: 655372.
|
50 |
Palathingal Bava E, George J, Tarique M, et al. Pirfenidone increases IL-10 and improves acute pancreatitis in multiple clinically relevant murine models[J]. JCI Insight, 2022, 7 (2): e141108.
|
51 |
Rafaqat S, Patoulias D, Behnoush AH, et al. Interleukins: pathophysiological role in acute pancreatitis[J]. Arch Med Sci, 2024, 20 (1): 138-156.
|
52 |
Kim MJ, Bae GS, Jo IJ, et al. Fraxinellone inhibits inflammatory cell infiltration during acute pancreatitis by suppressing inflammasome activation[J]. Int Immunopharmacol, 2019, 69: 169-177.
|
53 |
Sun S, Han Y, Zhang C, et al. Adenosine kinase inhibition prevents severe acute pancreatitis via suppressing inflammation and acinar cell necroptosis[J]. Front Cell Dev Biol, 2022, 10: 827714.
|
54 |
Dodd WS, Patel D, Lucke-Wold B, et al. Adropin decreases endothelial monolayer permeability after cell-free hemoglobin exposure and reduces MCP-1-induced macrophage transmigration[J]. Biochem Biophys Res Commun, 2021, 582: 105-110.
|
55 |
Ding F, Liu G, Gao F, et al. Adropin attenuates pancreatitis-associated lung injury through PPARγ phosphorylation-related macrophage polarization[J]. Int J Mol Med, 2023, 52 (4): 95.
|
56 |
Pan X, Fang X, Wang F, et al. Butyrate ameliorates caerulein-induced acute pancreatitis and associated intestinal injury by tissue-specific mechanisms[J]. Br J Pharmacol, 2019, 176 (23): 4446-4461.
|
57 |
Khurana A, Saifi MA, Godugu C. Nanoceria ameliorates fibrosis, inflammation, and cellular stress in experimental chronic pancreatitis[J]. ACS Biomater Sci Eng, 2023, 9 (2): 1030-1042.
|
58 |
Fu Z, Wang D, Zheng C, et al. Elimination of intracellular Ca2+ overload by BAPTA-AM liposome nanoparticles: a promising treatment for acute pancreatitis[J]. Int J Mol Med, 2024, 53 (4): 34.
|