1 |
Russo TA, Johnson JR. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem[J]. Microbes Infect, 2003, 5 (5): 449-456.
|
2 |
Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden[J]. Infect Dis Clin North Am, 2014, 28 (1): 1-13.
|
3 |
Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs[J]. Dis Mon, 2003, 49 (2): 53-70.
|
4 |
王江桥,巫雪平,李玉娟,等. 连续3年医院感染现患率调查报告[J]. 中国感染控制杂志,2006,5(1):19-22,34.
|
5 |
王金贤,朱晓玲,杨利亚. 医院感染现患率调查与现状分析[J]. 中华医院感染学杂志,2005,15(10):1119-1120.
|
6 |
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303 (5663): 1532-1535.
|
7 |
Nielubowicz GR, Mobley HL. Host-pathogen interactions in urinary tract infection[J]. Nat Rev Urol, 2010, 7 (8): 430-441.
|
8 |
Masuda S, Nakazawa D, Shida H, et al. NETosis markers: quest for specific, objective, and quantitative markers[J]. Clin Chim Acta, 2016, 459: 89-93.
|
9 |
Haraoka M, Hang L, Frendéus B, et al. Neutrophil recruitment and resistance to urinary tract infection[J]. J Infect Dis, 1999, 180 (4): 1220-1229.
|
10 |
Frendéus B, Godaly G, Hang L, et al. Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart[J]. J Exp Med, 2000, 192 (6): 881-890.
|
11 |
Yu Y, Sikorski P, Bowman-Gholston C, et al. Diagnosing inflammation and infection in the urinary system via proteomics[J]. J Transl Med, 2015, 13: 111.
|
12 |
Yu Y, Kwon K, Tsitrin T, et al. Characterization of early-phase neutrophil extracellular traps in urinary tract infections[J]. PLoS Pathog, 2017, 13 (1): e1006151.
|
13 |
Takei H, Araki A, Watanabe H, et al. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis[J]. J Leukoc Biol, 1996, 59 (2): 229-240.
|
14 |
Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin?[J]. J Cell Biol, 2012, 198 (5): 773-783.
|
15 |
Urban C, Zychlinsky A. Netting bacteria in sepsis[J]. Nat Med, 2007, 13 (4): 403-404.
|
16 |
Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps[J]. J Cell Biol, 2007, 176 (2): 231-241.
|
17 |
Wang Y, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation[J]. J Cell Biol, 2009, 184 (2): 205-213.
|
18 |
Abi Abdallah DS, Lin C, Ball CJ, et al. Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps[J]. Infect Immun, 2012, 80 (2): 768-777.
|
19 |
Tang D, Kang R, Berghe TV, et al. The molecular machinery of regulated cell death[J]. Cell Res, 2019, 29 (5): 347-364.
|
20 |
Thiam HR, Wong SL, Wagner DD, et al. Cellular mechanisms of NETosis[J]. Annu Rev Cell Dev Biol, 2020, 36: 191-218.
|
21 |
Papayannopoulos V. Neutrophil extracellular traps in immunity and disease[J]. Nat Rev Immunol, 2018, 18 (2): 134-147.
|
22 |
Bjornsdottir H, Welin A, Michaelsson E, et al. Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species[J]. Free Radic Biol Med, 2015, 89: 1024-1035.
|
23 |
Papayannopoulos V, Metzler KD, Hakkim A, et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps[J]. J Cell Biol, 2010, 191 (3): 677-691.
|
24 |
Steinberg BE, Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death[J]. Sci STKE, 2007, 2007 (379): pe11.
|
25 |
Remijsen Q, Vanden Berghe T, Wirawan E, et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation[J]. Cell Res, 2011, 21 (2): 290-304.
|
26 |
Chen K, Nishi H, Travers R, et al. Endocytosis of soluble immune complexes leads to their clearance by FcgammaRIIIB but induces neutrophil extracellular traps via FcgammaRIIA in vivo[J]. Blood, 2012, 120 (22): 4421-4431.
|
27 |
Douda DN, Khan MA, Grasemann H, et al. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx[J]. Proc Natl Acad Sci U S A, 2015, 112 (9): 2817-2822.
|
28 |
Naffah de Souza C, Breda LCD, Khan MA, et al. Alkaline pH promotes NADPH oxidase-independent neutrophil extracellular trap formation: a matter of mitochondrial reactive oxygen species generation and citrullination and cleavage of histone[J]. Front Immunol, 2017, 8: 1849.
|
29 |
Pieterse E, Rother N, Yanginlar C, et al. Cleaved N-terminal histone tails distinguish between NADPH oxidase (NOX)-dependent and NOX-independent pathways of neutrophil extracellular trap formation[J]. Ann Rheum Dis, 2018, 77 (12): 1790-1798.
|
30 |
Metzler KD, Fuchs TA, Nauseef WM, et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity[J]. Blood, 2011, 117 (3): 953-959.
|
31 |
Yipp BG, Kubes P. NETosis: how vital is it?[J]. Blood, 2013, 122 (16): 2784-2794.
|
32 |
Mann R, Mediati DG, Duggin IG, et al. Metabolic adaptations of uropathogenic E. coli in the urinary tract[J]. Front Cell Infect Microbiol, 2017, 7: 241.
|
33 |
Breimer ME, Hansson GC, Leffler H. The specific glycosphingolipid composition of human ureteral epithelial cells[J]. J Biochem, 1985, 98 (5): 1169-1180.
|
34 |
Lindberg FP, Lund B, Normark S. Genes of pyelonephritogenic E. coli required for digalactoside-specific agglutination of human cells[J]. EMBO J, 1984, 3 (5): 1167-1173.
|
35 |
Krogfelt KA, Bergmans H, Klemm P. Direct evidence that the FimH protein is the mannose-specific adhesin of Escherichia coli type 1 fimbriae[J]. Infect Immun, 1990, 58 (6): 1995-1998.
|
36 |
Wold AE, Mestecky J, Tomana M, et al. Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin[J]. Infect Immun, 1990, 58 (9): 3073-3077.
|
37 |
Sokurenko EV, Courtney HS, Abraham SN, et al. Functional heterogeneity of type 1 fimbriae of Escherichia coli[J]. Infect Immun, 1992, 60 (11): 4709-4719.
|
38 |
Sokurenko EV, Courtney HS, Ohman DE, et al. FimH family of type 1 fimbrial adhesins: functional heterogeneity due to minor sequence variations among fimH genes[J]. J Bacteriol, 1994, 176 (3): 748-755.
|
39 |
Song J, Duncan MJ, Li G, et al. A novel TLR4-mediated signaling pathway leading to IL-6 responses in human bladder epithelial cells[J]. PLoS Pathog, 2007, 3 (4): e60.
|
40 |
Hedges S, Svensson M, Svanborg C. Interleukin-6 response of epithelial cell lines to bacterial stimulation in vitro[J]. Infect Immun, 1992, 60 (4): 1295-1301.
|
41 |
Svensson M, Lindstedt R, Radin NS, et al. Epithelial glucosphingolipid expression as a determinant of bacterial adherence and cytokine production[J]. Infect Immun, 1994, 62 (10): 4404-4410.
|
42 |
Agace WW. The role of the epithelial cell in Escherichia coli induced neutrophil migration into the urinary tract[J]. Eur Respir J, 1996, 9 (8): 1713-1728.
|
43 |
Agace WW, Patarroyo M, Svensson M, et al. Escherichia coli induces transuroepithelial neutrophil migration by an intercellular adhesion molecule-1-dependent mechanism[J]. Infect Immun, 1995, 63 (10): 4054-4062.
|
44 |
Agace WW, Hedges SR, Ceska M, et al. Interleukin-8 and the neutrophil response to mucosal gram-negative infection[J]. J Clin Invest, 1993, 92 (2): 780-785.
|
45 |
Ko YC, Mukaida N, Ishiyama S, et al. Elevated interleukin-8 levels in the urine of patients with urinary tract infections[J]. Infect Immun, 1993, 61 (4): 1307-1314.
|
46 |
Chuntharapai A, Kim KJ. Regulation of the expression of IL-8 receptor A/B by IL-8: possible functions of each receptor[J]. J Immunol, 1995, 155 (5): 2587-2594.
|
47 |
Tanaka Y, Adams DH, Shaw S. Proteoglycans on endothelial cells present adhesion-inducing cytokines to leukocytes[J]. Immunol Today, 1993, 14 (3): 111-115.
|
48 |
Tosi MF, Stark JM, Smith CW, et al. Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cytokines: effects on neutrophil-epithelial cell adhesion[J]. Am J Respir Cell Mol Biol, 1992, 7 (2): 214-221.
|
49 |
Ishikura H, Takahashi C, Kanagawa K, et al. Cytokine regulation of ICAM-1 expression on human renal tubular epithelial cells in vitro[J]. Transplantation, 1991, 51 (6): 1272-1275.
|
50 |
Jackson AM, Alexandrov AB, Prescott S, et al. Expression of adhesion molecules by bladder cancer cells: modulation by interferon-gamma and tumour necrosis factor-alpha[J]. J Urol, 1992, 148 (5): 1583-1586.
|
51 |
Elgavish A. Effects of Escherichia coli and E. coli lipopolysaccharides on the function of human ureteral epithelial cells cultured in serum-free medium[J]. Infect Immun, 1993, 61 (8): 3304-3312.
|
52 |
Liebert M, Wedemeyer G, Stein JA, et al. Evidence for urothelial cell activation in interstitial cystitis[J]. J Urol, 1993, 149 (3): 470-475.
|
53 |
Minervini R, Panichi V, Viganò L, et al. Cellular expression of lymphocyte function-associated antigen-1 and intercellular adhesion molecule-1 in normal kidney structures and in renal cancer. Possible significance in immune response and in the clinicopathological correlation[J]. Eur Urol, 1994, 26 (1): 103-106.
|
54 |
Bechtel U, Scheuer R, Landgraf R, et al. Assessment of soluble adhesion molecules (sICAM-1, sVCAM-1, sELAM-1) and complement cleavage products (sC4d, sC5b-9) in urine. Clinical monitoring of renal allograft recipients[J]. Transplantation, 1994, 58 (8): 905-911.
|
55 |
Jackson AM, Alexandroff AB, Mcintyre M, et al. Induction of ICAM 1 expression on bladder tumours by BCG immunotherapy[J]. J Clin Pathol, 1994, 47 (4): 309-312.
|
56 |
Papayannopoulos V, Zychlinsky A. NETs: a new strategy for using old weapons[J]. Trends Immunol, 2009, 30 (11): 513-521.
|
57 |
Chertov O, Michiel DF, Xu L, et al. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils[J]. J Biol Chem, 1996, 271 (6): 2935-2940.
|
58 |
Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation[J]. Microbes Infect, 2003, 5 (14): 1317-1327.
|
59 |
Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans[J]. PLoS Pathog, 2009, 5 (10): e1000639.
|
60 |
Metzler KD, Goosmann C, Lubojemska A, et al. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis[J]. Cell Rep, 2014, 8 (3): 883-896.
|
61 |
Iba T, Hashiguchi N, Nagaoka I, et al. Neutrophil cell death in response to infection and its relation to coagulation[J]. J Intensive Care, 2013, 1 (1): 13.
|
62 |
Schauer C, Janko C, Munoz LE, et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines[J]. Nat Med, 2014, 20 (5): 511-517.
|
63 |
O'Donoghue AJ, Jin Y, Knudsen GM, et al. Global substrate profiling of proteases in human neutrophil extracellular traps reveals consensus motif predominantly contributed by elastase[J]. PLoS One, 2013, 8 (9): e75141.
|
64 |
Justice SS, Hunstad DA, Seed PC, et al. Filamentation by Escherichia coli subverts innate defenses during urinary tract infection[J]. Proc Natl Acad Sci U S A, 2006, 103 (52): 19884-19889.
|
65 |
Krivosíková K, Supcíková N, Gaál Kovalcíková A, et al. Neutrophil extracellular traps in urinary tract infection[J]. Front Pediatr, 2023, 11: 1154139.
|
66 |
Claushuis TAM, van der Donk LEH, Luitse AL, et al. Role of peptidylarginine deiminase 4 in neutrophil extracellular trap formation and host defense during Klebsiella pneumoniae-induced pneumonia-derived sepsis[J]. J Immunol, 2018, 201 (4): 1241-1252.
|
67 |
Holmes CL, Shim D, Kernien J, et al. Insight into neutrophil extracellular traps through systematic evaluation of citrullination and peptidylarginine deiminases[J]. J Immunol Res, 2029, 2019: 2160192.
|
68 |
Wu Z, Deng Q, Pan B, et al. Inhibition of PAD2 improves survival in a mouse model of lethal LPS-induced endotoxic shock[J]. Inflammation, 2020, 43 (4): 1436-1445.
|
69 |
Wong SL, Demers M, Martinod K, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing[J]. Nat Med, 2015, 21 (7): 815-819.
|
70 |
谢天,丁威威. 中性粒细胞胞外诱捕网与肠屏障功能障碍的研究进展[J/OL]. 中华危重症医学杂志(电子版),2019,12(3):199-204.
|
71 |
Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease[J]. Nat Med, 2017, 23 (3): 279-287.
|
72 |
张巧梅,孙小平,李冠胜,等. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J/OL]. 中华危重症医学杂志(电子版),2023,16(4):265-271.
|