1 |
Coccolini F, Sartelli M, Sawyer R, et al. Source control in emergency general surgery: WSES, GAIS, SIS-E, SIS-A guidelines[J]. World J Emerg Surg, 2023, 18 (1): 41.
|
2 |
高延可,常璠,蒋国梅,等. 2017-2021年某院腹腔感染患者细菌分布及耐药性分析[J]. 中国医学创新,2023,20(34):94-100.
|
3 |
Hesselink L, Spijkerman R, van Wessem KJP, et al. Neutrophil heterogeneity and its role in infectious complications after severe trauma[J]. World J Emerg Surg, 2019, 14: 24.
|
4 |
Wang G, Li X, Zhang L, et al. Crosstalk between dendritic cells and immune modulatory agents against sepsis[J]. Genes (Basel), 2020, 11 (3): 323.
|
5 |
He W, Xiao K, Fang M, et al. Immune cell number, phenotype, and function in the elderly with sepsis[J]. Aging Dis, 2021, 12 (1): 277-296.
|
6 |
Luan YY, Dong N, Xie M, et al. The significance and regulatory mechanisms of innate immune cells in the development of sepsis[J]. J Interferon Cytokine Res, 2014, 34 (1): 2-15.
|
7 |
Lan J, Zhang H, Zhao H, et al. Cord blood natural killer cells inhibit sepsis caused by feces-induced acute peritonitis via increasing endothelium integrity[J]. Cell Transplant, 2022, 31: 9636897221090257.
|
8 |
Gordon S, Plüddemann A. Tissue macrophages: heterogeneity and functions[J]. BMC Biol, 2017, 15 (1): 53.
|
9 |
Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages[J]. Immunity, 2014, 41 (1): 21-35.
|
10 |
Kong F, Saldarriaga OA, Spratt H, et al. Transcriptional profiling in experimental visceral leishmaniasis reveals a broad splenic inflammatory environment that conditions macrophages toward a disease-promoting phenotype[J]. PLoS Pathog, 2017, 13 (1): e1006165.
|
11 |
Semprini S, McNamara AV, Awais R, et al. Peritonitis activates transcription of the human prolactin locus in myeloid cells in a humanized transgenic rat model[J]. Endocrinology, 2012, 153 (6): 2724-2734.
|
12 |
Knudsen E, Carlsen H, Boyum A, et al. No major role for the transcription factor NF-κB in bone marrow function during peritonitis in the mouse[J]. Int J Hematol, 2014, 100 (2): 111-118.
|
13 |
Arvaniti K, Dimopoulos G, Antonelli M, et al. Epidemiology and age-related mortality in critically ill patients with intra-abdominal infection or sepsis: an international cohort study[J]. Int J Antimicrob Agents, 2022, 60 (1): 106591.
|
14 |
Jansen A, Bruse N, Waalders N, et al. Ex vivo and in vitro monocyte responses do not reflect in vivo immune responses and tolerance[J]. J Innate Immun, 2023, 15 (1): 174-187.
|
15 |
Shen B, Shen Q, Zeng Q, et al. Silenced-C5ar1 improved multiple organ injury in sepsis rats via inhibiting neutrophil extracellular trap[J]. J Mol Histol, 2024, 55 (1): 69-81.
|
16 |
Vega-Pérez A, Villarrubia LH, Godio C, et al. Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity[J]. Immunity, 2021, 54 (11): 2578-2594.e5.
|
17 |
Han D, Wu Y, Lu D, et al. Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammation[J]. Cell Death Dis, 2023, 14 (10): 656.
|
18 |
邱宇轩,贾宝雷,顼倩茹,等. 吲哚丙酸对溃疡性结肠炎小鼠肠道巨噬细胞及肠道菌群的调节作用[J]. 中国微生态学杂志,2023,35(7):745-749.
|
19 |
Bain CC, Mowat AM. Macrophages in intestinal homeostasis and inflammation[J]. Immunol Rev, 2014, 260 (1): 102-117.
|
20 |
Bain CC, Scott CL, Uronen-Hansson H, et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors[J]. Mucosal Immunol, 2013, 6 (3): 498-510.
|
21 |
Wahl SM. Transforming growth factor-beta: innately bipolar[J]. Curr Opin Immunol, 2007, 19 (1): 55-62.
|
22 |
Hoshi N, Schenten D, Nish SA, et al. MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10-deficient mice[J]. Nat Commun, 2012, 3: 1120.
|
23 |
Darbelli L, Richard S. Emerging functions of the Quaking RNA-binding proteins and link to human diseases[J]. Wiley Interdiscip Rev RNA, 2016, 7 (3): 399-412.
|
24 |
Chen X, Yin J, Cao D, et al. The emerging roles of the RNA binding protein QKI in cardiovascular development and function[J]. Front Cell Dev Biol, 2021, 9: 668659.
|
25 |
Fu H, Yang G, Wei M, et al. The RNA-binding protein QKI5 is a direct target of C/EBPα and delays macrophage differentiation[J]. Mol Biol Cell, 2012, 23 (9): 1628-1635.
|
26 |
Feng X, Yao F, Lang Y, et al. Downregulation of miR-145 alleviates ox-LDL-induced inflammation by targeting QKI in macrophages[J]. Am J Transl Res, 2022, 14 (6): 4251-4259.
|
27 |
武梦琪,邓乐乐,安珮瑜,等. RNA结合蛋白quaking:单核-巨噬细胞分化及功能的重要调控者[J]. 细胞与分子免疫学杂志,2023,39(11):1032-1038.
|
28 |
de Bruin RG, Vogel G, Prins J, et al. Targeting the RNA-binding protein QKI in myeloid cells ameliorates macrophage-induced renal interstitial fibrosis[J]. Epigenomes, 2020, 4 (1): 2.
|
29 |
Zhai D, Wang W, Ye Z, et al. QKI degradation in macrophage by RNF6 protects mice from MRSA infection via enhancing PI3K p110β dependent autophagy[J]. Cell Biosci, 2022, 12 (1): 154.
|
30 |
刘如娟,王铮,文礼,等. 机械敏感性离子通道Piezo1在免疫细胞和胰腺炎中的研究进展[J]. 中华消化外科杂志,2024,23(5):754-760.
|
31 |
Paerewijck O, Lamkanfi M. The human inflammasomes[J]. Mol Aspects Med, 2022, 88: 101100.
|
32 |
Park C, Cha HJ, Hwangbo H, et al. β-asarone alleviates high-glucose-induced oxidative damage via inhibition of ROS generation and inactivation of the NF-κB/NLRP3 Inflammasome pathway in human retinal pigment epithelial cells[J]. Antioxidants (Basel), 2023, 12 (7): 1410.
|
33 |
Huai W, Zhao R, Song H, et al. Aryl hydrocarbon receptor negatively regulates NLRP3 inflammasome activity by inhibiting NLRP3 transcription[J]. Nat Commun, 2014, 5: 4738.
|
34 |
Orecchioni M, Ghosheh, Y Pramod AB, et al. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages[J]. Front Immunol, 2019, 10: 1084.
|
35 |
Duan J, Liu X, Wang H, et al. The M2a macrophage subset may be critically involved in the fibrogenesis of endometriosis in mice[J]. Reprod Biomed Online, 2018, 37 (3): 254-268.
|
36 |
Peng Y, Zhou M, Yang H, et al. Regulatory mechanism of M1/M2 macrophage polarization in the development of autoimmune diseases[J]. Mediators Inflamm, 2023, 2023: 8821610.
|
37 |
Wang LX, Zhang SX, Wu HJ, et al. M2b macrophage polarization and its roles in diseases[J]. J Leukoc Biol, 2019, 106 (2): 345-358.
|
38 |
Lurier EB, Dalton D, Dampier W, et al. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing[J]. Immunobiology, 2017, 222 (7): 847-856.
|
39 |
Van den Bossche J, O'Neill LA, Menon D. Macrophage immunometabolism: where are we (going)?[J]. Trends Immunol, 2017, 38 (6): 395-406.
|
40 |
Gauthier T, Chen W. Modulation of macrophage immunometabolism: a new approach to fight infections[J]. Front Immunol, 2022, 13: 780839.
|
41 |
Jha AK, Huang SC, Sergushichev A, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization[J]. Immunity, 2015, 42 (3): 419-430.
|
42 |
Graham DB, Becker CE, Doan A, et al. Functional genomics identifies negative regulatory nodes controlling phagocyte oxidative burst[J]. Nat Commun, 2015, 6: 7838.
|
43 |
刘秦杰,吴婕,吴秀文,等. 脓毒症患者铁代谢紊乱的研究进展[J/OL]. 中华危重症医学杂志(电子版),2022,15(6):495-499.
|
44 |
彭适,李欢,陈娟娟,等. 铁死亡的发生机制及其在脓毒症中的研究进展[J/OL]. 中华危重症医学杂志(电子版),2022,15(6):500-504.
|
45 |
Qin W, Qin K, Zhang Y, et al. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate[J]. Nat Chem Biol, 2019, 15 (10): 983-991.
|
46 |
Liao ST, Han C, Xu DQ, et al. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects[J]. Nat Commun, 2019, 10 (1): 5091.
|
47 |
Mills EL, Ryan DG, Prag HA, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1[J]. Nature, 2018, 556 (7699): 113-117.
|
48 |
Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α[J]. Nature, 2013, 496 (7444): 238-242.
|
49 |
Lauterbach MA, Hanke JE, Serefidou M, et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase[J]. Immunity, 2019, 51 (6): 997-1011.e7.
|
50 |
Eisele NA, Ruby T, Jacobson A, et al. Salmonella require the fatty acid regulator PPARδ for the establishment of a metabolic environment essential for long-term persistence[J]. Cell Host Microbe, 2013, 14 (2): 171-182.
|
51 |
Cumming BM, Addicott KW, Adamson JH, et al. Mycobacterium tuberculosis induces decelerated bioenergetic metabolism in human macrophages[J]. Elife, 2018, 7: e39169.
|
52 |
Rodriguez AE, Ducker GS, Billingham LK, et al. Serine metabolism supports macrophage IL-1β production[J]. Cell Metab, 2019, 29 (4): 1003-1011.e4.
|
53 |
Rath M, Müller I, Kropf P, et al. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages[J]. Front Immunol, 2014, 5: 532.
|